
Processing 01

Environment

Drawing

Syntax

File handling

Variables

Loops

Conditionals

UIC/ART150 / Raaf
based on processing.org and Casey Reas, Ben Fry: Processing: a programming handbook for visual designers and artists. MIT Press.

What is Processing?

From http://www.processing.org:
Processing is an open source programming language and environment for people
who want to program images, animation, and interactions.

It is used by students, artists, designers, researchers, and hobbyists for learning,
prototyping, and production. It is created to teach fundamentals of computer
programming within a visual context and to serve as a software sketchbook and
professional production tool. Processing is developed by artists and designers as an
alternative to proprietary software tools in the same domain.

The original authors of Processing are Casey Reas and Ben Fry, who both studied under
John Maeda at MIT.

References
http://processing.org/reference

There are many examples in the learning section of the processing website:

http://processing.org/learning

Take a look at the “libraries” section and see how the functionality of Processing can

be expanded for specific interests and subjects.

http://processing.org/reference/libraries/

Other Galleries:

studio.Sketchpad -http://studio.sketchpad.cc/

http://studio.sketchpad.cc/sp/padlist/all-portfolio-sketches

OpenProcessing.org

Using Processing online with Processing.js:

http://processingjs.org/tools/processing-helper.html

http://processingjs.org/reference/

Using Processing online with P5.js:

https://p5js.org/examples/simulate-multiple-particle-systems.html

https://code.tutsplus.com/tutorials/introduction-to-p5js--cms-25665

https://p5js.org/reference/

Basic Tips and Tricks

•Highlight a word in the Processing code and ctrl click on it to display information about it in the Processing

Reference.

• Where can find my files? Each sketch resides in its own folder. You can browse to this folder by choosing

Sketch -> Show Sketch -> Folder from the Processing menu.

•Read “Processing & Programming Handbook for Visual Designers and Artists” by Casey Reas and Ben Fry if you
are interested in a thorough introduction to the software and its functions.

Extending Processing's functionality –-> libraries

Processing has become an extremely powerful scripting environment for the inclusion of almost any type of

media – mainly through the concept of libraries. These libraries consist of subroutines and code that extend the

functionality of Processing, often to include a particular kind of media (such as video, sound or 3D graphics) or

functionality (communications, interface design, fullscreen playback, etc.).

To install a library, unzip the file into the “libraries” folder in your sketchbook (you can find the sketchbook in

your home directory > Documents > Processing). If you do not already have a libraries folder in your sketchbook,

create this folder manually and unzip the files in there. In general, most libraries have instructions on the

website where you can download them from, following these directions is the easiest way to install a library

Sketches

All Processing projects are called sketches

Each sketch has its own folder (you can use the option in the menu Sketch/Show
Sketch Folder to show the content of this folder)

Example sketch:

line(10, 80, 30, 40); // Left line
line(20, 80, 40, 40);
line(30, 80, 50, 40); // Middle line
line(40, 80, 60, 40);
line(50, 80, 70, 40); // Right line

File handling and exporting

Remember: Each sketch has its own directory/folder where the main program
file is located with the ending .pde

You can browse to this folder by choosing Sketch/Show Sketch folder from the
Processing menu.

Example:

Sketch name: “My_First_Sketch_01",
The directory for the sketch will be called "My_First_Sketch_01"
The main file will be called "My_First_Sketch_01.pde".

EXPORTING TO WEB: If you click on ‘export’ in the Processing menu bar, a
subfolder called ‘applet’ will be created containing all files necessary to publish
your work, including an index.html you an double-click to view in the Web
browser.

You can reveal the content and location of your actual sketch folder by choosing
‘Sketch/Show Sketch folder’ in the Processing menu bar.

Environment + Toolbar

The GUI consists of a text editor for writing code, message area, console, menu,
toolbar, tabs for managing files

Run: Compiles the code, opens a display window, and runs the program inside.

Stop: Terminates a running program, but does not close the display window.

Canvas size, Coordinates & Drawing in Processing
The size of the display window is controlled with the size() function:
size(width, height)

The size function has two parameters: the first sets the width of the CANVAS (ie,
the window) and the second sets its height.

A position on the screen is comprised of an x-coordinate and a y-coordinate. The
x-coordinate is the horizontal distance from the origin and the y-coordinate is the
vertical distance.

In a 400 pixel wide by 400 high window, [0, 0] is the upper-left pixel, [320, 240]
is in the lower-right. The last visible pixel in the lower-right corner of the screen is
at [319, 239]

Coordinate	system

x

y

0 50 100
0

50

100

Basic Programming Mode - STATIC

size(200, 200);
background(255);
noStroke();
fill(255, 204, 0);
rect(30, 20, 50, 50);

Color

Colors	represented	as	Red	Green	Blue	(RGB)	values	
– Each	one	ranges	from	0	to	255

https://processing.org/tutorials/color/

Drawing

Defining the canvas size: size(300, 300); // 300 pixels wide, 300 pixels high

Setting the background color:

background(0); //black

background(255); //white

background(255, 0, 0); //makes canvas red in rgb syntax

Syntax

Common elements of the programming language and how they are used:

- Statement
- Statement Terminator - ;
- Function - somefunction()
- Parameter - values added to the function
- Comment - //

//example statements

line(10, 80, 30, 40);

i = i + 1;

String txt = "Boots and Pants";

print(txt);

note: Processing is case-sensitive: String, not string!

Comments
• Comments	are	non-program	text	you	put	in	the	file	to	describe	to others	(and	

yourself)	what	you’re	doing

• Important	for	being	able	to	look	back	at	your	code	and	understand it

• Single-line	comments	begin	with	//

• Multi-line	comments	begin	with	/*	and	end	with	*/

Commenting and uncommenting lines useful for
figuring out code

Drawing Graphic Primitives

size(200, 200);

//draws a point at x=10 and y=20
point(10, 10);

// draws a line from x1, y1 to x2, y2
line(10, 10, 100, 100);

// draws a rectangle over x1, y1, width, height
rect(10, 10, 180, 140);

// draws an ellipse x, y, width, height
ellipse(120, 50, 40, 40);

// draws a four sided polygon x1, y1, x2, y2, x3, y3, x4, y4
quad(38, 31, 86, 20, 69, 63, 30, 76);

// draws a triangle x1, y1, x2, y2, x3, y3
triangle(120, 120, 80, 160, 160, 180);

Drawing	Shapes

rect(25,	25,	10,	60);

rect(x,	y,	width,	height)

Drawing	Shapes

triangle(25,	35,	45,	65,	95,	42);

triangle(x1,	y1,	x2,	y2,	x3,	y3)

Drawing	Shapes

ellipse(50,	50,	25,	25);

ellipse(x,	y,	width,	height)

Defining Stroke and Fill Color

stroke(120); // gray stroke

stroke(0, 0, 255); // blue stroke

stroke(200, 80); // gray fill, transparent

noStroke(); // no Stroke

fill(100); // gray fill

fill(255, 0, 0); // red fill

fill(0, 255, 0, 127); // green fill semi transparent

noFill();

Values can be 00-2544- (which is 88 bits)
One number = grayscale value
Three numbers ==R,G,BB- or red, green, blue values
Four numbers = the fourth number is an alpha - ie,, just how transparent or opaque the fill is

strokeWeight() and smooth()

background(0); // Sets the black background
stroke(255); // Sets line value to white
strokeWeight(5); // Sets line width to 5 pixels
smooth(); // Makes lines with smooth edges
line(10, 80, 30, 40); // Left line
line(20, 80, 40, 40);
line(30, 80, 50, 40); // Middle line
line(40, 80, 60, 40);
line(50, 80, 70, 40); // Right line

example:

rect(10, 10, 50, 50);
fill(204); // Light gray
rect(20, 20, 50, 50);
fill(153); // Middle gray
rect(30, 30, 50, 50);
fill(102); // Dark gray
rect(40, 40, 50, 50);

– rectMode(CENTER)
– rectMode(CORNER)	//default
– rectMode(CORNERS)

https://processing.org/reference/rectMode_.html

Example code:
rectMode(CENTER);	
rect(35,	35,	50,	50);	
rectMode(CORNERS);	
fill(100);	
rect(35,	35,	50,	50);

Continuous Mode

Adding more structure to a program opens further possibilities.
The setup() and draw() functions make it possible for the program to run
continuously – this is required to create animation and interactive programs.

void setup()
{
 size(200, 200);
 noStroke();
 background(255);
 fill(0, 102, 153, 20);
 smooth();
}

void draw()
{
 ellipse(mouseX, mouseY, 50, 50);
}

Variables

- used to store values

- has a name (that you choose) & a value (choose a name that is descriptive)

- the name is Case-sensitive

- the name must not begin with special characters

String name = "ham"; // Declare and assign int
number = 32; // Declare and assign
int counter = 12; // Declare and assign
print(number);
print(name);
print(counter);
println(number); // println prints the line with a carriage return afterwards

println(name);
println(counter);

Variable / Data Types

int //Integer: e.g. 1, 2, 3, ...

float //Floating point number: e.g. 0.1, 2.747, ...

char //Character: “$”, “A”, stores one character.

String //String: e.g. ”skinny jeans”, series of characters.

boolean //Boolean: true or false; 1 or 0.

int x; // Declare the variable x of type int
float y; // Declare the variable f of type float
boolean b; // Declare the variable b of type boolean
x = 50; // Assign the value 50 to x
y = 12.6; // Assign the value 12.6 to f
b = true; // Assign the value true to b

Scope of Variables

Local Variables
Declared inside a function.
Can only be used inside the function where it is declared.

void setup(){
int bgColor = 200; // local variable
background(bgColor); // use local variable

}

void draw(){
background(bgColor); //Error: cannot use bgColor here
line(0, 0, width, height);

}

Scope of Variables

Global Variable
Declared outside the setup() and draw().
Can be used anywhere in your sketch.

int bgColor = 200; // global variable

void setup(){
background(bgColor); // use global variable

}

void draw(){
background(bgColor); //use global variable
line(0, 0, width, height);

}

Scope of Variables

If a local variable is declared with the same name as a global variable, the program will use
the local variable to make its calculations within the current scope.

int bgColor = 200; // local variable

void setup() {
 int bgColor = 100; // local variable
 background(bgColor); // use local variable
}

void draw() {
 background(bgColor); // use global variable
 line(0, 0, width, height);
}

Mouse position

mouseX: X-Position the mouse within the applet

mouseY: Y-Position

line(mouseX, 20, mouseX, 80);

mousePressed returns true while mouse is pressed, false if not.

void draw() {
 if (mousePressed == true) {
 fill(0);
 } else {
 fill(255);
 }
 rect(25, 25, 50, 50);
}

Mouse Interaction

mouseX, mouseY
Stores the current position of the mouse inside the window

pmouseX, pmouseY
Stores the position of the mouse in the previous frame inside the window

mousePressed, mousePressed()
Used to detect if/when the mouse is being pressed (clicked)

mouseButton
Stores information about what button is being pressed

mouseReleased()
Called every time the mouse is released

mouseDragged()
Called every time when the mouse is dragged (pressed and moved)

mouseMoved()
Called every time when the mouse moves and not pressed

Mouse Interaction

mouseX, mouseY

void setup()
{

size(500, 200);
strokeWeight(5);
stroke(0, 100);
smooth();

}

void draw()
{

ellipse(mouseX, mouseY, 5, 5);
}

Mouse Interaction I

mouseX, mouseY

pmouseX, pmouseY

pmouseX and pmouseY contains the previous horizontal and previous vertical
coordinate of the mouse. It is the position of the mouse in the frame previous to the
current frame.

This is very useful to determine the velocity of a mouse movement or gesture. By
subtracting the previous from the current mouse position the current mouse
velocity can be determined.

void draw()
{

background(204);
line(mouseX, 20, pmouseX, 80);

}

Conditionals

Statements within the if section are only executed in case the condition (i < 35)
is true; statements within the else section are executed only in case the
condition is false.

void setup () {
 size(300, 300);
}

void draw() {
 if(mouseX < 150) {
 line(0, mouseY, 150, mouseY);
 }
 else {
 line(150, mouseY, 300, mouseY);
 }
}

Relational Operators

Used to compare values (conditionals):

> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
!= (inequality)
== (equality)

5 > 4 // True
5 < 3 // False
5 > 5 // False
5 >= 5 // True
5 >= 6 // False
5 != 5 // False(not equal)
5 == 5 // True
5 == 4 // False

Mouse Interaction II

mousePressed

mousePressed is a system variable which is true if the button is pressed and false if
the button is not pressed.

void setup() {
size(200, 200);
rectMode(CENTER);
background(255);
smooth();
noStroke();

}

void draw() {
if(mousePressed == true) {

fill(random(255), 100);
} else {

fill(0);
}
rect(mouseX, mouseY, 30, 30);

}

Mouse Interaction III

mousePressed()

The mousePressed() system function is called every time the mouse button is pressed.

int fillColor = 0;
void draw() {

fill(fillColor);
rect(25, 25, 50, 50);

}
void mousePressed()
{

if(fillColor == 0) {
fillColor = 255;

} else {
fillColor = 0;

}
}

Loops: For and While

The for() loop uses defined conditions

for (int i=40; i<80; i=i+5) {
 line(30, i, 80, i);
}

The while()loop repeats as long as the condition is true

int i=0;
while (i<80) {
 line(30, i, 80, i);
 i = i+5;
}

note: if the test condition in the while loop cannot be false, the program freezes

Using Libraries

Libraries allow you to extend Processing capabilities.

To use a library

1. Download it and extract it.

2. Find the folder that contains the library subfolder and put it inside the Processing
libraries folder (put the parent folder, not the library folder directly).

Mac: Documents->Processing->libraries.
PC: libraries folder inside your Processing main folder.

Look for libraries at: http://processing.org/reference/libraries/

http://processing.org/reference/libraries/
http://processing.org/reference/libraries/

Interesting Libraries:

Sudden Motion Sensor:

Allows mac users to use the built-in accelerometer to control Processing sketches.
http://www.shiffman.net/p5/sms/

GUI libraries:

Control P5: http://www.sojamo.de/libraries/controlP5/
GUI Components: http://www.lagers.org.uk/g4p/index.html

Sprites for Processing:

Handles automatic motion of sprites and collision detection.
http://www.lagers.org.uk/s4p/index.html

Using Libraries

http://www.shiffman.net/p5/sms/
http://www.shiffman.net/p5/sms/
http://www.sojamo.de/libraries/controlP5/
http://www.sojamo.de/libraries/controlP5/
http://www.lagers.org.uk/g4p/index.html
http://www.lagers.org.uk/g4p/index.html
http://www.lagers.org.uk/s4p/index.html
http://www.lagers.org.uk/s4p/index.html

Traer Physics

Particle Systems and simple physics for processing (no collision detection though)
http://www.cs.princeton.edu/~traer/physics/

NextText

Auto text animations and control
http://www.nexttext.net/

Using Libraries

http://www.cs.princeton.edu/~traer/physics/
http://www.cs.princeton.edu/~traer/physics/
http://www.nexttext.net
http://www.nexttext.net

Transformations

rect(20, 20, 40, 40)

rect(20 + 60, 20 + 80, 40, 40)

rect(20 + 60, 20 + 80, 40, 40)

Using transformations: we move the coordinate system instead of individual objects

translate(60, 80);
rect(20, 20, 40, 40)

Translate

Translate

Follow the mouse using translate.

void setup()
{
 size(200, 200);
 noStroke();
 fill(255, 0, 0);
}

void draw()
{
 background(255);

 translate(mouseX, mouseY);
 ellipse(0, 0, 40, 40);
}

rect(0, 5, 70, 30);
translate(10, 30);
rect(0, 5, 70, 30);

Only the second rect is affected by translate

Translate

rect(0, 5, 70, 30);
translate(10, 30);
rect(0, 5, 70, 30);
translate(10, 30);
rect(0, 5, 70, 30);

Transformation accumulate (are additive)

Translate

void setup()
{
 size(200, 200);
 noStroke();
}

void draw()
{
 background(255);

 fill(255, 0, 0, 100);
 translate(mouseX, mouseY);
 ellipse(0, 0, 40, 40);

 // Note that this ellipse will move twice as fast as the previous,
 // because transformation accumulate
 fill(0, 255, 0, 100);
 translate(mouseX, mouseY);
 ellipse(0, 0, 40, 40);

}

Translate

void setup()
{
 size(200, 200);
 background(255);
 noStroke();

 // draw the original position in gray
 fill(192);
 rect(20, 20, 40, 40);

 // draw a translucent red rectangle by changing the coordinates
 // passed to the rect function
 fill(255, 0, 0, 128);
 rect(20 + 60, 20 + 80, 40, 40);

 // draw a translucent blue rectangle by translating the grid
 fill(0, 0, 255, 128);
 translate(60, 80);
 rect(20, 20, 40, 40);
}

Translate

Rotate
The rotate function rotates the coordinate system allowing you to draw shapes at an angle

Rotations are specified in radians and in clockwise direction.

Rotations are also accumulated.

You can transform values to/from radians/degrees using the functions

radians(float value);
degrees(float value);

smooth();
rect(55, 0, 30, 45);
rotate(PI/8);
rect(55, 0, 30, 45);

Rotate

To rotate objects from their center, you need to combine translation + rotation.

Example with a square:

A. Translate the coordinate system’s origin (0, 0) to where you want the upper left of the square to be.

B. Rotate the grid PI/4 radians (45°)

C. Draw the square at the origin.

 // Draw from the center
 rectMode(CENTER);

 // move the origin to the pivot point
 translate(width/2, height/2);

 // then pivot the grid
 rotate(radians(45));

 // and draw the square at the origin
 fill(0);
 rect(0, 0, 40, 40);

Scale

The scale function scales the coordinate system allowing you to draw shapes at an
different sizes

The scales are specified as percentages in decimal mode: 2.0 = 200%.

Be careful, as scaling also affects the position of objects that are not drawn at 0, 0.

smooth();
ellipse(32, 32, 30, 30);
scale(1.5);
ellipse(32, 32, 30, 30);

Scale

Be careful, as scaling also affects the position of objects that are not drawn at 0, 0.

See in this example, how drawing the ellipses at (32, 32) vs drawing them at (0, 0) with a
translation of (32, 32) makes a different outcome when scale is involved.

noFill();
smooth();
ellipse(32, 32, 30, 30);
scale(1.5);
ellipse(32, 32, 30, 30);

noFill();
smooth();
translate(32, 32);
ellipse(0, 0, 30, 30);
scale(1.5);
ellipse(0, 0, 30, 30);

Examples

void setup() {
 size(200, 200);
 background(255);
 smooth();
 noStroke();
}

void draw(){
 if (frameCount % 10 == 0) {
 fill(frameCount * 3 % 255, frameCount * 5 % 255,frameCount * 7 % 255);

 translate(100, 100);
 rotate(radians(frameCount * 2 % 360));

 rect(0, 0, 80, 20);
 }
}

Drawing a color wheel

Examples

size(200, 200);
background(0);
smooth();
stroke(255, 100);

translate(width/2, 80);
for (int i = 0; i < 18; i++)
{
 strokeWeight(i);
 rotate(PI/12);
 line(0, 0, 55, 0);
}

Using a for loop to accumulate transformations

