

R
eas &

 Fry
M

ake:
G

etting S
tarted w

ith P
rocessing

A Hands-On Introduction to Making
Interactive Graphics

Casey Reas & Ben Fry

Second Edition

Getting
Started with
Processing

Computers / Digital Media

Make: Getting Started with Processing

With Getting Started with Processing, you’ll:

Learn computer programming the easy way with Processing, a simple
language that lets you use code to create drawings, animation, and
interactive graphics. Programming courses usually start with theory, but
this book jumps right into creative and fun projects. It’s ideal for anyone
who wants to learn programming, and serves as a simple introduction to
graphics for people who already have some programming skills.

Written by the founders of Processing, this book takes you through the
learning process one step at a time to help you grasp core programming
concepts. Join the thousands of hobbyists, students, and professionals
who have discovered this free and educational community platform.

» Quickly learn programming basics, from variables to objects

» Understand the fundamentals of computer graphics

» Get acquainted with the Processing software environment

» Create interactive graphics with easy-to-follow projects

» Learn to apply data visualization techniques

» Connect electronics to Processing with Arduino

» Add sound to your graphical creations

Make:
makezine.com

US $24.99 CAN $28.99

ISBN: 978-1-4571-8708-7

Casey Reas is a Professor at UCLA’s Department of Design Media Arts. His
software, prints, and installations have been featured in numerous solo and
group exhibitions at museums and galleries in the United States, Europe, and
Asia. Casey cofounded Processing with Ben Fry in 2001.

Ben Fry is principal of Fathom, a design and software consultancy located in
Boston. He received his PhD from the Aesthetics + Computation Group at the
MIT Media Laboratory, where his research focused on combining fields such
as computer science, statistics, graphic design, and data visualization as a
means for understanding information. Ben cofounded Processing with Casey
Reas in 2001.

Updated for Processing 3.0 and now in full color!

Getting
Started with
Processing
SECOND EDITION

Casey Reas and Ben Fry

Advance Praise for Getting Started
with Processing

“Making a computer program used to be as easy as turning
it on and typing one or two lines of code to get it to say,

Hello. Now it takes a 500+-page manual and an entire
village. Not anymore. This little book by Ben and Casey gets

you computationally drawing lines, triangles, and circles
within minutes of clicking the download button. They’ve

made making computer programs humanly and humanely
possible again—and that’s no small feat.”

— John Maeda, President of Rhode Island
School of Design

“Getting Started with Processing is not only a
straightforward introduction to basic programming—it’s

fun! It almost feels like an activity workbook for grownups.
You may want to buy it even if you never thought you were

interested in programming, because you will be.”

— Mark Allen, Founder and Director,
Machine Project

“This is an excellent primer for those wanting to dip their
feet into programming graphics. Its learning by doing

approach makes it particularly appropriate for artists and
designers who are often put off by more traditional theory-

first approaches. The price of the book and the fact that the
Processing environment is open source makes this an

excellent choice for students.”

— Gillian Crampton Smith, Fondazione
Venezia Professor of Design, IUAV

University of Venice

“Processing changed dramatically the way we teach
programming and it’s one of the major factors of the

success of Arduino.”

— Massimo Banzi, Cofounder of Arduino

“Casey Reas and Ben Fry champion the exciting power of
programming for creatives in Getting Started with

Processing, a hands-on guide for making code-based
drawings and interactive graphics. Reas and Fry are clear

and direct, but as artists, they’re not afraid to be a bit
eccentric and offbeat. This makes their unique form of

teaching powerful.”

— Holly Willis, Director of Academic
Programs, Institute for Multimedia Literacy,

School of Cinematic Arts, USC

978-1-457-18708-7

[LSI]

Make: Getting Started with Processing
by Casey Reas and Ben Fry

Copyright © 2015 Ben Fry and Casey Reas. All rights reserved.

Printed in the United States of America.

Published by Maker Media, Inc., 1160 Battery Street East, Suite 125, San Francisco,
CA 94111.

Maker Media books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://safaribookson-
line.com). For more information, contact our corporate/institutional sales depart-
ment: 800-998-9938 or corporate@oreilly.com.

Editor: Anna Kaziunas France
Production Editor: Nicole Shelby
Copyeditor: Jasmine Kwityn
Proofreader: Kim Cofer

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Casey Reas
Illustrator: Rebecca Demarest

September 2015: Second Edition

Revision History for the Second Edition

2015-09-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781457187087 for release details.

The Make logo is a registered trademark of Maker Media, Inc. Make: Getting Started
with Processing, the cover image, and related trade dress are trademarks of Maker
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Maker Media, Inc., was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without limi-
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi-
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781457187087

Contents

Preface. xi

1/Hello. 1

Sketching and Prototyping. 2

Flexibility. 2

Giants. 3

Family Tree. 4

Join In. 5

2/Starting to Code. 7

Your First Program. 8

Example 2-1: Draw an Ellipse. 9

Example 2-2: Make Circles. 9

Show. 10

Save and New. 11

Share. 11

Examples and Reference. 11

3/Draw. 13

The Display Window. 13

Example 3-1: Draw a Window. 14

Example 3-2: Draw a Point. 14

Basic Shapes. 14

Example 3-3: Draw a Line. 16

Example 3-4: Draw Basic Shapes. 16

Example 3-5: Draw a Rectangle. 16

Example 3-6: Draw an Ellipse. 17

Example 3-7: Draw Part of an Ellipse. 18

Example 3-8: Draw with Degrees. 19

Drawing Order. 20

Example 3-9: Control Your Drawing Order. 20

Example 3-10: Put It in Reverse. 20

Shape Properties. 21

v

Example 3-11: Set Stroke Weight. 21

Example 3-12: Set Stroke Caps. 21

Example 3-13: Set Stroke Joins. 22

Drawing Modes. 22

Example 3-14: On the Corner. 23

Color. 23

Example 3-15: Paint with Grays. 25

Example 3-16: Control Fill and Stroke. 25

Example 3-17: Draw with Color. 26

Example 3-18: Set Transparency. 27

Custom Shapes. 28

Example 3-19: Draw an Arrow. 28

Example 3-20: Close the Gap. 28

Example 3-21: Create Some Creatures. 29

Comments. 30

Robot 1: Draw. 32

4/Variables. 35

First Variables. 35

Example 4-1: Reuse the Same Values. 35

Example 4-2: Change Values. 36

Making Variables. 36

Processing Variables. 38

Example 4-3: Adjust the Size, See What Follows. 38

A Little Math. 38

Example 4-4: Basic Arithmetic. 39

Repetition. 40

Example 4-5: Do the Same Thing Over and Over. 41

Example 4-6: Use a for Loop. 41

Example 4-7: Flex Your for Loop’s Muscles. 43

Example 4-8: Fanning Out the Lines. 43

Example 4-9: Kinking the Lines. 44

Example 4-10: Embed One for Loop in Another. 44

Example 4-11: Rows and Columns. 45

Example 4-12: Pins and Lines. 46

Example 4-13: Halftone Dots. 46

Robot 2: Variables. 47

5/Response. 49

Once and Forever. 49

Example 5-1: The draw() Function. 49

Example 5-2: The setup() Function. 50

vi Contents

Example 5-3: Global Variable. 51

Follow. 51

Example 5-4: Track the Mouse. 51

Example 5-5: The Dot Follows You. 52

Example 5-6: Draw Continuously. 53

Example 5-7: Set Line Thickness. 53

Example 5-8: Easing Does It. 54

Example 5-9: Smooth Lines with Easing. 55

Click. 56

Example 5-10: Click the Mouse. 57

Example 5-11: Detect When Not Clicked. 58

Example 5-12: Multiple Mouse Buttons. 59

Location. 61

Example 5-13: Find the Cursor. 62

Example 5-14: The Bounds of a Circle. 63

Example 5-15: The Bounds of a Rectangle. 64

Type. 66

Example 5-16: Tap a Key. 67

Example 5-17: Draw Some Letters. 68

Example 5-18: Check for Specific Keys. 68

Example 5-19: Move with Arrow Keys. 70

Map. 70

Example 5-20: Map Values to a Range. 70

Example 5-21: Map with the map() Function. 71

Robot 3: Response. 72

6/Translate, Rotate, Scale. 75

Translate. 75

Example 6-1: Translating Location. 76

Example 6-2: Multiple Translations. 76

Rotate. 77

Example 6-3: Corner Rotation. 78

Example 6-4: Center Rotation. 78

Example 6-5: Translation, then Rotation. 79

Example 6-6: Rotation, Then Translation. 80

Example 6-7: An Articulating Arm. 80

Scale. 82

Example 6-8: Scaling. 82

Example 6-9: Keeping Strokes Consistent. 83

Push and Pop. 83

Example 6-10: Isolating Transformations. 84

Robot 4: Translate, Rotate, Scale. 85

Contents vii

7/Media. 89

Images. 90

Example 7-1: Load an Image. 90

Example 7-2: Load More Images. 91

Example 7-3: Mousing Around with Images. 92

Example 7-4: Transparency with a GIF. 93

Example 7-5: Transparency with a PNG. 94

Fonts. 94

Example 7-6: Drawing with Fonts. 95

Example 7-7: Draw Text in a Box. 96

Example 7-8: Store Text in a String. 97

Shapes. 97

Example 7-9: Draw with Shapes. 98

Example 7-10: Scaling Shapes. 98

Example 7-11: Creating a New Shape. 99

Robot 5: Media. 101

8/Motion. 103

Frames. 103

Example 8-1: See the Frame Rate. 103

Example 8-2: Set the Frame Rate. 104

Speed and Direction. 104

Example 8-3: Move a Shape. 104

Example 8-4: Wrap Around. 105

Example 8-5: Bounce Off the Wall. 107

Tweening. 108

Example 8-6: Calculate Tween Positions. 108

Random. 109

Example 8-7: Generate Random Values. 109

Example 8-8: Draw Randomly. 109

Example 8-9: Move Shapes Randomly. 110

Timers. 111

Example 8-10: Time Passes. 112

Example 8-11: Triggering Timed Events. 112

Circular. 113

Example 8-12: Sine Wave Values. 115

Example 8-13: Sine Wave Movement. 115

Example 8-14: Circular Motion. 116

Example 8-15: Spirals. 116

Robot 6: Motion. 118

viii Contents

9/Functions. 121

Function Basics. 122

Example 9-1: Roll the Dice. 122

Example 9-2: Another Way to Roll. 123

Make a Function. 124

Example 9-3: Draw the Owl. 124

Example 9-4: Two’s Company. 125

Example 9-5: An Owl Function. 126

Example 9-6: Increasing the Surplus Population. 128

Example 9-7: Owls of Different Sizes. 129

Return Values. 130

Example 9-8: Return a Value. 130

Robot 7: Functions. 131

10/Objects. 135

Fields and Methods. 136

Define a Class. 137

Create Objects. 142

Example 10-1: Make an Object. 142

Example 10-2: Make Multiple Objects. 143

Tabs. 145

Robot 8: Objects. 147

11/Arrays. 149

From Variables to Arrays. 149

Example 11-1: Many Variables. 149

Example 11-2: Too Many Variables. 150

Example 11-3: Arrays, Not Variables. 151

Make an Array. 152

Example 11-4: Declare and Assign an Array. 153

Example 11-5: Compact Array Assignment. 154

Example 11-6: Assigning to an Array in One Go. 154

Example 11-7: Revisiting the First Example. 154

Repetition and Arrays. 155

Example 11-8: Filling an Array in a for Loop. 155

Example 11-9: Track Mouse Movements. 156

Arrays of Objects. 158

Example 11-10: Managing Many Objects. 159

Example 11-11: A New Way to Manage Objects. 159

Example 11-12: Sequences of Images. 160

Robot 9: Arrays. 162

Contents ix

12/Data. 165

Data Summary. 165

Tables. 166

Example 12-1: Read the Table. 168

Example 12-2: Draw the Table. 168

Example 12-3: 29,740 Cities. 170

JSON. 172

Example 12-4: Read a JSON File. 173

Example 12-5: Visualize Data from a JSON File. 174

Network Data and APIs. 176

Example 12-6: Parsing the Weather Data. 178

Example 12-7: Chaining Methods. 179

Robot 10: Data. 180

13/Extend. 183

Sound. 184

Example 13-1: Play a Sample. 185

Example 13-2: Listen to a Microphone. 186

Example 13-3: Create a Sine Wave. 188

Image and PDF Export. 189

Example 13-4: Saving Images. 190

Example 13-5: Draw to a PDF. 191

Hello, Arduino. 193

Example 13-6: Read a Sensor. 194

Example 13-7: Read Data from the Serial Port. 195

Example 13-8: Visualizing the Data Stream. 196

Example 13-9: Another Way to Look at the Data. 198

A/Coding Tips. 201

B/Data Types. 207

C/Order of Operations. 209

D/Variable Scope. 211

Index. 213

x Contents

Preface

We created Processing to make
programming interactive graphics easier.
We were frustrated with how difficult it
was to write this type of software with the
programming languages we usually used
(Java and C++), and were inspired by
how simple it was to write interesting pro-
grams with the languages of our
childhood (Logo and BASIC). We were
most influenced by Design By Numbers
(DBN), a language we were maintaining
and teaching at the time (and which was
created by our research advisor,
John Maeda).
Processing was born in spring 2001 as a brainstorming session
on a sheet of paper. Our goal was to make a way to sketch (pro-
totype) the type of software we were working on, which was
almost always full-screen and interactive. We were searching for
a better way to test our ideas easily in code, rather than just
talking about them or spending too much time programming
them in C++. Our other goal was to make a language for teach-
ing design and art students how to program and to give more
technical students an easier way to work with graphics. The
combination is a positive departure from the way programming
is usually taught. We begin by focusing on graphics and interac-
tion rather than on data structures and text console output.

xi

Processing experienced a long childhood; it was alpha software
from August 2002 to April 2005 and then public beta software
until November 2008. During this time, it was used continuously
in classrooms and by thousands of people around the world.
The language, software environment, and curricula around the
project were revised continuously during this time. Many of our
original decisions about the language were reinforced and many
were changed. We developed a system of software extensions,
called libraries, that have allowed people to expand Processing
into many unforeseen and amazing directions. (There are now
over 100 libraries.)

In fall 2008, we launched the 1.0 version of the software. After
seven years of work, the 1.0 launch signified stability for the lan-
guage. We launched the 2.0 release in spring 2013 to make the
software faster. The 2.0 releases introduced better OpenGL
integration, GLSL shaders, and faster video playback with
GStreamer. The 3.0 releases in 2015 make programming in Pro-
cessing easier with a new interface and error checking while
programming.

Now, fourteen years after its origin, Processing has grown
beyond its original goals, and we’ve learned how it can be useful
in other contexts. Accordingly, this book is written for a new
audience—casual programmers, hobbyists, and anyone who
wants to explore what Processing can do without getting lost in
the details of a huge textbook. We hope you’ll have fun and be
inspired to continue programming. This book is just the start.

While we (Casey and Ben) have been guiding the Processing
ship through the waters for the last twelve years, we can’t over-
state that Processing is a community effort. From writing libra-
ries that extend the software to posting code online and helping
others learn, the community of people who use Processing has
pushed it far beyond its initial conception. Without this group
effort, Processing would not be what it is today.

xii Preface

How This Book Is Organized
The chapters in this book are organized as follows:

• Chapter 1: Learn about Processing.

• Chapter 2: Create your first Processing program.

• Chapter 3: Define and draw simple shapes.

• Chapter 4: Store, modify, and reuse data.

• Chapter 5: Control and influence programs with the mouse
and the keyboard.

• Chapter 6: Transform the coordinates.

• Chapter 7: Load and display media including images, fonts,
and vector files.

• Chapter 8: Move and choreograph shapes.

• Chapter 9: Build new code modules.

• Chapter 10: Create code modules that combine variables
and functions.

• Chapter 11: Simplify working with lists of variables.

• Chapter 12: Load and visualize data.

• Chapter 13: Learn about 3D, PDF export, computer vision,
and reading data from an Arduino board.

Who This Book Is For
This book is written for people who want a casual and concise
introduction to computer programming, who want to create
images and simple interactive programs. It’s for people who
want a jump-start on understanding the thousands of free Pro-
cessing code examples and reference materials available online.
Getting Started with Processing is not a programming textbook;
as the title suggests, it will get you started. It’s for teenagers,
hobbyists, grandparents, and everyone in between.

This book is also appropriate for people with programming
experience who want to learn the basics of interactive computer
graphics. Getting Started with Processing contains techniques

Preface xiii

that can be applied to creating games, animation, and
interfaces.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width
Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state-
ments, and keywords.

Constant width italic
Shows text that should be replaced with user-supplied val-
ues or by values determined by context.

This element signifies a tip, suggestion, or general
note.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and documen-
tation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For exam-
ple, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a
CD-ROM of examples from Make: books does require permis-
sion. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a sig-

xiv Preface

nificant amount of example code from this book into your pro-
duct’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For exam-
ple: “Getting Started with Processing by Casey Reas and Ben
Fry. Copyright 2015 Casey Reas and Ben Fry,
978-1-457-18708-7.”

If you feel your use of code examples falls outside fair use or the
permission given here, feel free to contact us at bookpermis-
sions@makermedia.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s
leading authors in technology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books Online
as their primary resource for research, problem solving, learn-
ing, and certification training.

Safari Books Online offers a range of plans and pricing for enter-
prise, government, education, and individuals.

Members have access to thousands of books, training videos,
and prepublication manuscripts in one fully searchable data-
base from publishers like Maker Media, O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press,
Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley
& Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-
Hill, Jones & Bartlett, Course Technology, and hundreds more.
For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

Preface xv

mailto:bookpermissions@makermedia.com
mailto:bookpermissions@makermedia.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

Maker Media, Inc.
1160 Battery Street East, Suite 125
San Francisco, California 94111
800-998-9938 (in the United States or Canada)
http://makermedia.com/contact-us/

Make: unites, inspires, informs, and entertains a growing com-
munity of resourceful people who undertake amazing projects in
their backyards, basements, and garages. Make: celebrates your
right to tweak, hack, and bend any technology to your will. The
Make: audience continues to be a growing culture and commu-
nity that believes in bettering ourselves, our environment, our
educational system—our entire world. This is much more than
an audience, it’s a worldwide movement that Make: is leading—
we call it the Maker Movement.

For more information about Make:, visit us online:

Make: magazine: http://makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, exam-
ples, and any additional information. You can access this page
at: http://shop.oreilly.com/product/0636920031406.do

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

Acknowledgments
For the first and second editions of this book, we thank Brian
Jepson for his great energy, support, and insight. For the first
edition, Nancy Kotary, Rachel Monaghan, and Sumita Mukherji
gracefully carried the book to the finish line. Tom Sgouros made
a thorough edit of the book and David Humphrey provided an
insightful technical review.

We can’t imagine this book without Massimo Banzi’s Getting
Started with Arduino (Maker Media). Massimo’s excellent book
is the prototype.

xvi Preface

http://makezine.com/magazine/
http://makerfaire.com
http://makezine.com
http://makershed.com/
http://shop.oreilly.com/product/0636920031406.do
mailto:bookquestions@oreilly.com

A small group of individuals has, for years, contributed essential
time and energy to Processing. Dan Shiffman is our partner in
the Processing Foundation, the 501(c)(3) organization that sup-
ports the Processing software. Much of the core code for Pro-
cessing 2.0 and 3.0 has come from the sharp minds of Andres
Colubri and Manindra Moharana. Scott Murray, Jamie Kosoy,
and Jon Gacnik have built a wonderful web infrastructure for the
project. James Grady is rocking the 3.0 user interface. We thank
Florian Jenett for his years of diverse work on the project includ-
ing the forums, website, and design. Elie Zananiri and Andreas
Schlegel have created the infrastructure for building and docu-
menting contributed libraries and have spent countless hours
curating the lists. Many others have contributed significantly to
the project; the precise data is available at https://github.com/
processing.

The Processing 1.0 release was supported by Miami University
and Oblong Industries. The Armstrong Institute for Interactive
Media Studies at Miami University funded the Oxford Project, a
series of Processing development workshops. These workshops
were made possible through the hard work of Ira Greenberg.
These four-day meetings in Oxford, Ohio, and Pittsburgh, Penn-
sylvania, enabled the November 2008 launch of Processing 1.0.
Oblong Industries funded Ben Fry to develop Processing during
summer 2008; this was essential to the release.

The Processing 2.0 release was facilitated by a development
workshop sponsored by New York University’s Interactive Tele-
communication Program. The work on Processing 3.0 was gen-
erously sponsored by the Emergent Digital Practices program at
the University of Denver. We thank Christopher Colemen and
Laleh Mehran for the essential support.

This book grew out of teaching with Processing at UCLA. Chan-
dler McWilliams has been instrumental in defining these
classes. Casey thanks the undergraduate students in the
Department of Design Media Arts at UCLA for their energy and
enthusiasm. His teaching assistants have been great collabora-
tors in defining how Processing is taught. Hats off to Tatsuya
Saito, John Houck, Tyler Adams, Aaron Siegel, Casey Alt,
Andres Colubri, Michael Kontopoulos, David Elliot, Christo Alle-
gra, Pete Hawkes, and Lauren McCarthy.

Preface xvii

https://github.com/processing
https://github.com/processing

Through founding the Aesthetics and Computation Group
(1996–2002) at the MIT Media Lab, John Maeda made all of this
possible.

xviii Preface

1/Hello

Processing is for writing software to make
images, animations, and interactions.
The idea is to write a single line of code,
and have a circle show up on the screen.
Add a few more lines of code, and the cir-
cle follows the mouse. Another line of
code, and the circle changes color when
the mouse is pressed. We call this
sketching with code. You write one line,
then add another, then another, and so
on. The result is a program created one
piece at a time.
Programming courses typically focus on structure and theory
first. Anything visual—an interface, an animation—is considered
a dessert to be enjoyed only after finishing your vegetables, usu-
ally several weeks of studying algorithms and methods. Over the
years, we’ve watched many friends try to take such courses and
drop out after the first lecture or after a long, frustrating night
before the first assignment deadline. What initial curiosity they
had about making the computer work for them was lost
because they couldn’t see a path from what they had to learn
first to what they wanted to create.

Processing offers a way to learn programming through creating
interactive graphics. There are many possible ways to teach
coding, but students often find encouragement and motivation
in immediate visual feedback. Processing’s capacity for provid-
ing that feedback has made it a popular way to approach pro-

1

gramming, and its emphasis on images, sketching, and commu-
nity is discussed in the next few pages.

Sketching and Prototyping
Sketching is a way of thinking; it’s playful and quick. The basic
goal is to explore many ideas in a short amount of time. In our
own work, we usually start by sketching on paper and then mov-
ing the results into code. Ideas for animation and interactions
are usually sketched as storyboards with notations. After mak-
ing some software sketches, the best ideas are selected and
combined into prototypes (Figure 1-1). It’s a cyclical process of
making, testing, and improving that moves back and forth
between paper and screen.

Figure 1-1. As drawings move from sketchbook to screen, new
possibilities emerge

Flexibility
Like a software utility belt, Processing consists of many tools
that work together in different combinations. As a result, it can

2 Getting Started with Processing

be used for quick hacks or for in-depth research. Because a Pro-
cessing program can be as short as one line or as long as thou-
sands, there’s room for growth and variation. More than 100
libraries extend Processing even further into domains including
sound, computer vision, and digital fabrication (Figure 1-2).

Figure 1-2. Many types of information can flow in and out of
Processing

Giants
People have been making pictures with computers since the
1960s, and there’s much to be learned from this history. For
example, before computers could display to CRT or LCD
screens, huge plotter machines (Figure 1-3) were used to draw
images. In life, we all stand on the shoulders of giants, and the
titans for Processing include thinkers from design, computer
graphics, art, architecture, statistics, and the spaces between.
Have a look at Ivan Sutherland’s Sketchpad (1963), Alan Kay’s
Dynabook (1968), and the many artists featured in Ruth Leav-
itt’s Artist and Computer (Harmony Books, 1976). The ACM SIG-

Hello 3

http://www.atariarchives.org/artist/

GRAPH and Ars Electronica archives provide fascinating glimp-
ses into the history of graphics and software.

Figure 1-3. Drawing demonstration by Manfred Mohr at Musée
d’Art Moderne de la Ville de Paris using the Benson plotter and a
digital computer on May 11, 1971. (photo by Rainer Mürle, cour-
tesy bitforms gallery, New York)

Family Tree
Like human languages, programming languages belong to fami-
lies of related languages. Processing is a dialect of a program-
ming language called Java; the language syntax is almost identi-
cal, but Processing adds custom features related to graphics
and interaction (Figure 1-4). The graphic elements of Processing
are related to PostScript (a foundation of PDF) and OpenGL (a
3D graphics specification). Because of these shared features,
learning Processing is an entry-level step to programming in
other languages and using different software tools.

4 Getting Started with Processing

Figure 1-4. Processing has a large family of related languages
and programming environments

Join In
Thousands of people use Processing every day. Like them, you
can download Processing without cost. You even have the
option to modify the Processing code to suit your needs. Pro-
cessing is a FLOSS project (that is, free/libre/open source soft-
ware), and in the spirit of community, we encourage you to par-
ticipate by sharing your projects and knowledge online at Pro-
cessing.org and at the many social networking sites that host
Processing content. These sites are linked from the Process-
ing.org website.

Hello 5

http://processing.org
http://processing.org

2/Starting to Code

To get the most out of this book, you
need to do more than just read the
words. You need to experiment and prac-
tice. You can’t learn to code just by read-
ing about it—you need to do it. To get
started, download Processing and make
your first sketch.
Start by visiting http://processing.org/download and selecting
the Mac, Windows, or Linux version, depending on what
machine you have. Installation on each machine is straightfor-
ward:

• On Windows, you’ll have a .zip file. Double-click it, and drag
the folder inside to a location on your hard disk. It could be
Program Files or simply the desktop, but the important
thing is for the processing folder to be pulled out of that .zip
file. Then double-click processing.exe to start.

• The Mac OS X version is a .zip file. Double-click it, and drag
the Processing icon to the Applications folder. If you’re
using someone else’s machine and can’t modify the Appli-
cations folder, just drag the application to the desktop. Then
double-click the Processing icon to start.

• The Linux version is a .tar.gz file, which should be familiar to
most Linux users. Download the file to your home directory,
then open a terminal window, and type:

tar xvfz processing-xxxx.tgz

(Replace xxxx with the rest of the file’s name, which is the ver-
sion number.) This will create a folder named processing-3.0 or
something similar. Then change to that directory:

7

http://processing.org/download

cd processing-xxxx

and run it:

./processing

With any luck, the main Processing window will now be visible
(Figure 2-1). Everyone’s setup is different, so if the program
didn’t start, or you’re otherwise stuck, visit the troubleshooting
page for possible solutions.

Figure 2-1. The Processing Development Environment

Your First Program
You’re now running the Processing Development Environment
(or PDE). There’s not much to it; the large area is the Text Editor,
and there’s two buttons across the top; this is the Toolbar.
Below the editor is the Message Area, and below that is the Con-
sole. The Message Area is used for one-line messages, and the
Console is used for more technical details.

8 Getting Started with Processing

http://bit.ly/process-wiki
http://bit.ly/process-wiki

Example 2-1: Draw an Ellipse
In the editor, type the following:

ellipse(50, 50, 80, 80);

This line of code means “draw an ellipse, with the center 50 pix-
els over from the left and 50 pixels down from the top, with a
width and height of 80 pixels.” Click the Run button the (triangle
button in the Toolbar).

If you’ve typed everything correctly, you’ll see a circle on your
screen. If you didn’t type it correctly, the Message Area will turn
red and complain about an error. If this happens, make sure that
you’ve copied the example code exactly: the numbers should be
contained within parentheses and have commas between each
of them, and the line should end with a semicolon.

One of the most difficult things about getting started with pro-
gramming is that you have to be very specific about the syntax.
The Processing software isn’t always smart enough to know
what you mean, and can be quite fussy about the placement of
punctuation. You’ll get used to it with a little practice.

Next, we’ll skip ahead to a sketch that’s a little more exciting.

Example 2-2: Make Circles
Delete the text from the last example, and try this one:

void setup() {
 size(480, 120);
}

void draw() {
 if (mousePressed) {
 fill(0);
 } else {

Starting to Code 9

 fill(255);
 }
 ellipse(mouseX, mouseY, 80, 80);
}

This program creates a window that is 480 pixels wide and 120
pixels high, and then starts drawing white circles at the position
of the mouse. When a mouse button is pressed, the circle color
changes to black. We’ll explain more about this program later.
For now, run the code, move the mouse, and click to see what it
does. While the sketch is running, the Run button will change to
a square “stop” icon, which you can click to halt the sketch.

Show
If you don’t want to use the buttons, you can always use the
Sketch menu, which reveals the shortcut Ctrl-R (or Cmd-R on
the Mac) for Run. The Present option clears the rest of the
screen when the program is run to present the sketch all by
itself. You can also use Present from the Toolbar by holding
down the Shift key as you click the Run button. See Figure 2-2.

Figure 2-2. A Processing sketch is displayed on screen with Run
and Present. The Present option clears the entire screen before
running the code for a cleaner presentation.

10 Getting Started with Processing

Save and New
The next command that’s important is Save. You can find it
under the File menu. By default, your programs are saved to the
“sketchbook,” which is a folder that collects your programs for
easy access. Select the Sketchbook option in the File menu to
bring up a list of all the sketches in your sketchbook.

It’s always a good idea to save your sketches often. As you try
different things, keep saving with different names, so that you
can always go back to an earlier version. This is especially help-
ful if—no, when—something breaks. You can also see where the
sketch is located on your computer with the Show Sketch Folder
command under the Sketch menu.

You can create a new sketch by selecting the New option from
the File menu. This will create a new sketch in its own window.

Share
Processing sketches are made to be shared. The Export Appli-
cation option in the File menu will bundle your code into a single
folder. Export Application creates an application for your choice
of Mac, Windows, and/or Linux. This is an easy way to make
self-contained, double-clickable versions of your projects that
can run full screen or in a window.

The application folders are erased and re-created
each time you use the Export Application command,
so be sure to move the folder elsewhere if you do not
want it to be erased with the next export.

Examples and Reference
Learning how to program involves exploring lots of code: run-
ning, altering, breaking, and enhancing it until you have resha-
ped it into something new. With this in mind, the Processing
software download includes dozens of examples that demon-
strate different features of the software.

Starting to Code 11

To open an example, select Examples from the File menu and
double-click an example’s name to open it. The examples are
grouped into categories based on their function, such as Form,
Motion, and Image. Find an interesting topic in the list and try an
example.

All of the examples in this book can be downloaded
and run from the Processing Development Environ-
ment. Open the examples through the File menu,
then click Add Examples to open the list of example
packages available to download. Select the Getting
Started with Processing package and click Install to
download.

When looking at code in the editor, you’ll see that functions like
ellipse() and fill() have a different color from the rest of the
text. If you see a function that you’re unfamiliar with, select the
text, and then click “Find in Reference” from the Help menu. You
can also right-click the text (or Ctrl-click on a Mac) and choose
“Find in Reference” from the menu that appears. This will open
a web browser and show the reference for that function. In addi-
tion, you can view the full documentation for the software by
selecting Reference from the Help menu.

The Processing Reference explains every code element with a
description and examples. The Reference programs are much
shorter (usually four or five lines) and easier to follow than the
longer code found in the Examples folder. We recommend keep-
ing the Reference open while you’re reading this book and while
you’re programming. It can be navigated by topic or alphabeti-
cally; sometimes it’s fastest to do a text search within your
browser window.

The Reference was written with the beginner in mind; we hope
that we’ve made it clear and understandable. We’re grateful to
the many people who’ve spotted errors over the years and
reported them. If you think you can improve a reference entry or
you find a mistake, please let us know by clicking the link at the
top of each reference page.

12 Getting Started with Processing

3/Draw

At first, drawing on a computer screen is
like working on graph paper. It starts as a
careful technical procedure, but as new
concepts are introduced, drawing simple
shapes with software expands into
animation and interaction. Before we
make this jump, we need to start at the
beginning.
A computer screen is a grid of light elements called pixels. Each
pixel has a position within the grid defined by coordinates. In
Processing, the x coordinate is the distance from the left edge of
the Display Window and the y coordinate is the distance from
the top edge. We write coordinates of a pixel like this: (x, y). So,
if the screen is 200×200 pixels, the upper-left is (0, 0), the cen-
ter is at (100, 100), and the lower-right is (199, 199). These num-
bers may seem confusing; why do we go from 0 to 199 instead
of 1 to 200? The answer is that in code, we usually count from 0
because it’s easier for calculations that we’ll get into later.

The Display Window
The Display Window is created and images are drawn inside
through code elements called functions. Functions are the basic
building blocks of a Processing program. The behavior of a func-
tion is defined by its parameters. For example, almost every Pro-
cessing program has a size() function to set the width and
height of the Display Window. (If your program doesn’t have a
size() function, the dimension is set to 100×100 pixels.)

13

Example 3-1: Draw a Window
The size() function has two parameters: the first sets the width
of the window and the second sets the height. To draw a window
that is 800 pixels wide and 600 high, type:

size(800, 600);

Run this line of code to see the result. Put in different values to
see what’s possible. Try very small numbers and numbers larger
than your screen.

Example 3-2: Draw a Point
To set the color of a single pixel within the Display Window, we
use the point() function. It has two parameters that define a
position: the x coordinate followed by the y coordinate. To draw
a little window and a point at the center of the screen, coordi-
nate (240, 60), type:

size(480, 120);
point(240, 60);

Try to write a program that puts a point at each corner of the
Display Window and one in the center. Try placing points side by
side to make horizontal, vertical, and diagonal lines.

Basic Shapes
Processing includes a group of functions to draw basic shapes
(see Figure 3-1). Simple shapes like lines can be combined to
create more complex forms like a leaf or a face.

To draw a single line, we need four parameters: two for the start-
ing location and two for the end.

14 Getting Started with Processing

Figure 3-1. Shapes and their coordinates

Draw 15

Example 3-3: Draw a Line
To draw a line between coordinate (20, 50) and (420, 110), try:

size(480, 120);
line(20, 50, 420, 110);

Example 3-4: Draw Basic Shapes
Following this pattern, a triangle needs six parameters and a
quadrilateral needs eight (one pair for each point):

size(480, 120);
quad(158, 55, 199, 14, 392, 66, 351, 107);
triangle(347, 54, 392, 9, 392, 66);
triangle(158, 55, 290, 91, 290, 112);

Example 3-5: Draw a Rectangle
Rectangles and ellipses are both defined with four parameters:
the first and second are for the x and y coordinates of the
anchor point, the third for the width, and the fourth for the
height. To make a rectangle at coordinate (180, 60) with a width
of 220 pixels and height of 40, use the rect() function like this:

16 Getting Started with Processing

size(480, 120);
rect(180, 60, 220, 40);

Example 3-6: Draw an Ellipse
The x and y coordinates for a rectangle are the upper-left corner,
but for an ellipse they are the center of the shape. In this exam-
ple, notice that the y coordinate for the first ellipse is outside the
window. Objects can be drawn partially (or entirely) out of the
window without an error:

size(480, 120);
ellipse(278, -100, 400, 400);
ellipse(120, 100, 110, 110);
ellipse(412, 60, 18, 18);

Processing doesn’t have separate functions to make squares
and circles. To make these shapes, use the same value for the
width and the height parameters to ellipse() and rect().

Draw 17

Example 3-7: Draw Part of an Ellipse
The arc() function draws a piece of an ellipse:

size(480, 120);
arc(90, 60, 80, 80, 0, HALF_PI);
arc(190, 60, 80, 80, 0, PI+HALF_PI);
arc(290, 60, 80, 80, PI, TWO_PI+HALF_PI);
arc(390, 60, 80, 80, QUARTER_PI, PI+QUARTER_PI);

The first and second parameters set the location, the third and
fourth set the width and height. The fifth parameter sets the
angle to start the arc, and the sixth sets the angle to stop. The
angles are set in radians, rather than degrees. Radians are angle
measurements based on the value of pi (3.14159). Figure 3-2
shows how the two relate. As featured in this example, four
radian values are used so frequently that special names for
them were added as a part of Processing. The values PI, QUAR
TER_PI, HALF_PI, and TWO_PI can be used to replace the radian
values for 180°, 45°, 90°, and 360°.

18 Getting Started with Processing

Figure 3-2. Radians and degrees are two ways to measure an
angle. Degrees move around the circle from 0 to 360, while radi-
ans measure the angles in relation to pi, from 0 to approximately
6.28.

Example 3-8: Draw with Degrees
If you prefer to use degree measurements, you can convert to
radians with the radians() function. This function takes an
angle in degrees and changes it to the corresponding radian
value. The following example is the same as Example 3-7 on
page 18, but it uses the radians() function to define the start
and stop values in degrees:

size(480, 120);
arc(90, 60, 80, 80, 0, radians(90));

Draw 19

arc(190, 60, 80, 80, 0, radians(270));
arc(290, 60, 80, 80, radians(180), radians(450));
arc(390, 60, 80, 80, radians(45), radians(225));

Drawing Order
When a program runs, the computer starts at the top and reads
each line of code until it reaches the last line and then stops. If
you want a shape to be drawn on top of all other shapes, it
needs to follow the others in the code.

Example 3-9: Control Your Drawing
Order

size(480, 120);
ellipse(140, 0, 190, 190);
// The rectangle draws on top of the ellipse
// because it comes after in the code
rect(160, 30, 260, 20);

Example 3-10: Put It in Reverse
Modify by reversing the order of rect() and ellipse() to see the
circle on top of the rectangle:

size(480, 120);
rect(160, 30, 260, 20);
// The ellipse draws on top of the rectangle

20 Getting Started with Processing

// because it comes after in the code
ellipse(140, 0, 190, 190);

You can think of it like painting with a brush or making a collage.
The last element that you add is what’s visible on top.

Shape Properties
The most basic and useful shape properties are stroke weight,
the way the ends (caps) of lines are drawn, and how the corners
of shapes are displayed.

Example 3-11: Set Stroke Weight
The default stroke weight is a single pixel, but this can be
changed with the strokeWeight() function. The single parame-
ter to strokeWeight() sets the width of drawn lines:

size(480, 120);
ellipse(75, 60, 90, 90);
strokeWeight(8); // Stroke weight to 8 pixels
ellipse(175, 60, 90, 90);
ellipse(279, 60, 90, 90);
strokeWeight(20); // Stroke weight to 20 pixels
ellipse(389, 60, 90, 90);

Example 3-12: Set Stroke Caps
The strokeCap() function changes how lines are drawn at their
endpoints. By default, they have rounded ends:

Draw 21

size(480, 120);
strokeWeight(24);
line(60, 25, 130, 95);
strokeCap(SQUARE); // Square the line endings
line(160, 25, 230, 95);
strokeCap(PROJECT); // Project the line endings
line(260, 25, 330, 95);
strokeCap(ROUND); // Round the line endings
line(360, 25, 430, 95);

Example 3-13: Set Stroke Joins
The strokeJoin() function changes the way lines are joined
(how the corners look). By default, they have pointed (mitered)
corners:

size(480, 120);
strokeWeight(12);
rect(60, 25, 70, 70);
strokeJoin(ROUND); // Round the stroke corners
rect(160, 25, 70, 70);
strokeJoin(BEVEL); // Bevel the stroke corners
rect(260, 25, 70, 70);
strokeJoin(MITER); // Miter the stroke corners
rect(360, 25, 70, 70);

When any of these attributes are set, all shapes drawn afterward
are affected. For instance, in Example 3-11 on page 21, notice
how the second and third circles both have the same stroke
weight, even though the weight is set only once before both are
drawn.

Drawing Modes
A group of functions with “mode” in their name change how
Processing draws geometry to the screen. In this chapter, we’ll
look at ellipseMode() and rectMode(), which help us to draw

22 Getting Started with Processing

ellipses and rectangles, respectively; later in the book, we’ll
cover imageMode() and shapeMode().

Example 3-14: On the Corner
By default, the ellipse() function uses its first two parameters
as the x and y coordinate of the center and the third and fourth
parameters as the width and height. After ellipseMode(CORNER)
is run in a sketch, the first two parameters to ellipse() then
define the position of the upper-left corner of the rectangle the
ellipse is inscribed within. This makes the ellipse() function
behave more like rect() as seen in this example:

size(480, 120);
rect(120, 60, 80, 80);
ellipse(120, 60, 80, 80);
ellipseMode(CORNER);
rect(280, 20, 80, 80);
ellipse(280, 20, 80, 80);

You’ll find these “mode” functions in examples throughout the
book. There are more options for how to use them in the Pro-
cessing Reference.

Color
All the shapes so far have been filled white with black outlines,
and the background of the Display Window has been light gray.
To change them, use the background(), fill(), and stroke()
functions. The values of the parameters are in the range of 0 to
255, where 255 is white, 128 is medium gray, and 0 is black.
Figure 3-3 shows how the values from 0 to 255 map to different
gray levels.

Draw 23

Figure 3-3. Colors are created by defining RGB (red, green, blue)
values

24 Getting Started with Processing

Example 3-15: Paint with Grays
This example shows three different gray values on a black back-
ground:

size(480, 120);
background(0); // Black
fill(204); // Light gray
ellipse(132, 82, 200, 200); // Light gray circle
fill(153); // Medium gray
ellipse(228, -16, 200, 200); // Medium gray circle
fill(102); // Dark gray
ellipse(268, 118, 200, 200); // Dark gray circle

Example 3-16: Control Fill and Stroke
You can disable the stroke so that there’s no outline by using
noStroke(), and you can disable the fill of a shape with noFill():

size(480, 120);
fill(153); // Medium gray
ellipse(132, 82, 200, 200); // Gray circle
noFill(); // Turn off fill
ellipse(228, -16, 200, 200); // Outline circle
noStroke(); // Turn off stroke
ellipse(268, 118, 200, 200); // Doesn't draw!

Be careful not to disable the fill and stroke at the same time, as
we’ve done in the previous example, because nothing will draw
to the screen.

Draw 25

Example 3-17: Draw with Color
To move beyond grayscale values, you use three parameters to
specify the red, green, and blue components of a color.

Run the code in Processing to reveal the colors:

size(480, 120);
noStroke();
background(0, 26, 51); // Dark blue color
fill(255, 0, 0); // Red color
ellipse(132, 82, 200, 200); // Red circle
fill(0, 255, 0); // Green color
ellipse(228, -16, 200, 200); // Green circle
fill(0, 0, 255); // Blue color
ellipse(268, 118, 200, 200); // Blue circle

This is referred to as RGB color, which comes from how comput-
ers define colors on the screen. The three numbers stand for
the values of red, green, and blue, and they range from 0 to 255
the way that the gray values do. Using RGB color isn’t very intu-
itive, so to choose colors, use Tools→Color Selector, which
shows a color palette similar to those found in other software
(see Figure 3-4). Select a color, and then use the R, G, and B val-
ues as the parameters for your background(), fill(), or
stroke() function.

26 Getting Started with Processing

Figure 3-4. Processing Color Selector

Example 3-18: Set Transparency
By adding an optional fourth parameter to fill() or stroke(),
you can control the transparency. This fourth parameter is
known as the alpha value, and also uses the range 0 to 255 to
set the amount of transparency. The value 0 defines the color as
entirely transparent (it won’t display), the value 255 is entirely
opaque, and the values between these extremes cause the col-
ors to mix on screen:

size(480, 120);
noStroke();
background(204, 226, 225); // Light blue color
fill(255, 0, 0, 160); // Red color
ellipse(132, 82, 200, 200); // Red circle
fill(0, 255, 0, 160); // Green color
ellipse(228, -16, 200, 200); // Green circle

Draw 27

fill(0, 0, 255, 160); // Blue color
ellipse(268, 118, 200, 200); // Blue circle

Custom Shapes
You’re not limited to using these basic geometric shapes—you
can also define new shapes by connecting a series of points.

Example 3-19: Draw an Arrow
The beginShape() function signals the start of a new shape. The
vertex() function is used to define each pair of x and y coordi-
nates for the shape. Finally, endShape() is called to signal that
the shape is finished:

size(480, 120);
beginShape();
fill(153, 176, 180);
vertex(180, 82);
vertex(207, 36);
vertex(214, 63);
vertex(407, 11);
vertex(412, 30);
vertex(219, 82);
vertex(226, 109);
endShape();

Example 3-20: Close the Gap
When you run Example 3-19 on page 28, you’ll see the first and
last point are not connected. To do this, add the word CLOSE as a
parameter to endShape(), like this:

28 Getting Started with Processing

size(480, 120);
beginShape();
fill(153, 176, 180);
vertex(180, 82);
vertex(207, 36);
vertex(214, 63);
vertex(407, 11);
vertex(412, 30);
vertex(219, 82);
vertex(226, 109);
endShape(CLOSE);

Example 3-21: Create Some Creatures
The power of defining shapes with vertex() is the ability to
make shapes with complex outlines. Processing can draw thou-
sands and thousands of lines at a time to fill the screen with fan-
tastic shapes that spring from your imagination. A modest but
more complex example follows:

size(480, 120);

// Left creature
fill(153, 176, 180);
beginShape();
vertex(50, 120);
vertex(100, 90);
vertex(110, 60);
vertex(80, 20);
vertex(210, 60);

Draw 29

vertex(160, 80);
vertex(200, 90);
vertex(140, 100);
vertex(130, 120);
endShape();
fill(0);
ellipse(155, 60, 8, 8);

// Right creature
fill(176, 186, 163);
beginShape();
vertex(370, 120);
vertex(360, 90);
vertex(290, 80);
vertex(340, 70);
vertex(280, 50);
vertex(420, 10);
vertex(390, 50);
vertex(410, 90);
vertex(460, 120);
endShape();
fill(0);
ellipse(345, 50, 10, 10);

Comments
The examples in this chapter use double slashes (//) at the end
of a line to add comments to the code. Comments are parts of
the program that are ignored when the program is run. They are
useful for making notes for yourself that explain what’s happen-
ing in the code. If others are reading your code, comments are
especially important to help them understand your thought pro-
cess.

Comments are also especially useful for a number of different
options, such as when trying to choose the right color. So, for
instance, I might be trying to find just the right red for an ellipse:

size(200, 200);
fill(165, 57, 57);
ellipse(100, 100, 80, 80);

Now suppose I want to try a different red, but don’t want to lose
the old one. I can copy and paste the line, make a change, and
then “comment out” the old one:

30 Getting Started with Processing

size(200, 200);
//fill(165, 57, 57);
fill(144, 39, 39);
ellipse(100, 100, 80, 80);

Placing // at the beginning of the line temporarily disables it. Or
I can remove the // and place it in front of the other line if I want
to try it again:

size(200, 200);
fill(165, 57, 57);
//fill(144, 39, 39);
ellipse(100, 100, 80, 80);

As you work with Processing sketches, you’ll find yourself creat-
ing dozens of iterations of ideas; using comments to make notes
or to disable code can help you keep track of multiple options.

As a shortcut, you can also use Ctrl-/ (Cmd-/ on the
Mac) to add or remove comments from the current
line or a selected block of text. You can also com-
ment out many lines at a time with the alternative
comment notation introduced in “Comments” on
page 203.

Draw 31

Robot 1: Draw

This is P5, the Processing Robot. There are 10 different pro-
grams to draw and animate him in the book—each one explores
a different programming idea. P5’s design was inspired by Sput-
nik I (1957), Shakey from the Stanford Research Institute
(1966–1972), the fighter drone in David Lynch’s Dune (1984),
and HAL 9000 from 2001: A Space Odyssey (1968), among
other robot favorites.

The first robot program uses the drawing functions introduced
in this chapter. The parameters to the fill() and stroke() func-
tions set the gray values. The line(), ellipse(), and rect()
functions define the shapes that create the robot’s neck, anten-
nae, body, and head. To get more familiar with the functions, run
the program and change the values to redesign the robot:

size(720, 480);
strokeWeight(2);
background(0, 153, 204); // Blue background
ellipseMode(RADIUS);

// Neck
stroke(255); // Set stroke to white
line(266, 257, 266, 162); // Left

32 Getting Started with Processing

line(276, 257, 276, 162); // Middle
line(286, 257, 286, 162); // Right

// Antennae
line(276, 155, 246, 112); // Small
line(276, 155, 306, 56); // Tall
line(276, 155, 342, 170); // Medium

// Body
noStroke(); // Disable stroke
fill(255, 204, 0); // Set fill to orange
ellipse(264, 377, 33, 33); // Antigravity orb
fill(0); // Set fill to black
rect(219, 257, 90, 120); // Main body
fill(255, 204, 0); // Set fill to yellow
rect(219, 274, 90, 6); // Yellow stripe

// Head
fill(0); // Set fill to black
ellipse(276, 155, 45, 45); // Head
fill(255); // Set fill to white
ellipse(288, 150, 14, 14); // Large eye
fill(0); // Set fill to black
ellipse(288, 150, 3, 3); // Pupil
fill(153, 204, 255); // Set fill to light blue
ellipse(263, 148, 5, 5); // Small eye 1
ellipse(296, 130, 4, 4); // Small eye 2
ellipse(305, 162, 3, 3); // Small eye 3

Draw 33

4/Variables

A variable stores a value in memory so
that it can be used later in a program. The
variable can be used many times within a
single program, and the value is easily
changed while the program is running.

First Variables
One of the reasons we use variables is to avoid repeating our-
selves in the code. If you are typing the same number more than
once, consider using a variable instead so that your code is
more general and easier to update.

Example 4-1: Reuse the Same Values
For instance, when you make the y coordinate and diameter for
the three circles in this example into variables, the same values
are used for each ellipse:

size(480, 120);
int y = 60;
int d = 80;
ellipse(75, y, d, d); // Left
ellipse(175, y, d, d); // Middle
ellipse(275, y, d, d); // Right

35

Example 4-2: Change Values
Simply changing the y and d variables alters all three ellipses:

size(480, 120);
int y = 100;
int d = 130;
ellipse(75, y, d, d); // Left
ellipse(175, y, d, d); // Middle
ellipse(275, y, d, d); // Right

Without the variables, you’d need to change the y coordinate
used in the code three times and the diameter six times. When
comparing Example 4-1 on page 35 and Example 4-2 on page
36, notice how the bottom three lines are the same, and only the
middle two lines with the variables are different. Variables allow
you to separate the lines of the code that change from the lines
that don’t, which makes programs easier to modify. For
instance, if you place variables that control colors and sizes of
shapes in one place, then you can quickly explore different vis-
ual options by focusing on only a few lines of code.

Making Variables
When you make your own variables, you determine the name,
the data type, and the value. The name is what you decide to call
the variable. Choose a name that is informative about what the
variable stores, but be consistent and not too verbose. For
instance, the variable name “radius” will be clearer than “r”
when you look at the code later.

The range of values that can be stored within a variable is
defined by its data type. For instance, the integer data type can
store numbers without decimal places (whole numbers). In
code, integer is abbreviated to int. There are data types to store

36 Getting Started with Processing

each kind of data: integers, floating-point (decimal) numbers,
characters, words, images, fonts, and so on.

Variables must first be declared, which sets aside space in the
computer’s memory to store the information. When declaring a
variable, you also need to specify its data type (such as int),
which indicates what kind of information is being stored. After
the data type and name are set, a value can be assigned to the
variable:

int x; // Declare x as an int variable
x = 12; // Assign a value to x

This code does the same thing, but is shorter:

int x = 12; // Declare x as an int variable and assign a value

The name of the data type is included on the line of code that
declares a variable, but it’s not written again. Each time the data
type is written in front of the variable name, the computer thinks
you’re trying to declare a new variable. You can’t have two vari-
ables with the same name in the same part of the program
(Appendix D), so the program has an error:

int x; // Declare x as an int variable
int x = 12; // ERROR! Can't have two variables called x here

Each data type stores a different kind of data. For instance, an
int variable can store a whole number, but it can’t store a num-
ber with decimal points, called a float. The word “float” refers
to “floating point,” which describes the technique used to store
a number with decimal points in memory. (The specifics of that
technique aren’t important here.)

A floating-point number can’t be assigned to an int because
information would be lost. For instance, the value 12.2 is differ-
ent from its nearest int equivalent, the value 12. In code, this
operation will create an error:

int x = 12.2; // ERROR! A floating-point value can't fit in
an int

However, a float variable can store an integer. For instance, the
integer value 12 can be converted to the floating-point equiva-
lent 12.0 because no information is lost. This code works
without an error:

Variables 37

float x = 12; // Automatically converts 12 to 12.0

Data types are discussed in more detail in Appendix B.

Processing Variables
Processing has a series of special variables to store information
about the program while it runs. For instance, the width and
height of the window are stored in variables called width and
height. These values are set by the size() function. They can be
used to draw elements relative to the size of the window, even if
the size() line changes.

Example 4-3: Adjust the Size, See
What Follows
In this example, change the parameters to size() to see how it
works:

size(480, 120);
line(0, 0, width, height); // Line from (0,0) to (480, 120)
line(width, 0, 0, height); // Line from (480, 0) to (0, 120)
ellipse(width/2, height/2, 60, 60);

Other special variables keep track of the status of the mouse
and keyboard values and much more. These are discussed in
Chapter 5.

A Little Math
People often assume that math and programming are the same
thing. Although knowledge of math can be useful for certain
types of coding, basic arithmetic covers the most important
parts.

38 Getting Started with Processing

Example 4-4: Basic Arithmetic

size(480, 120);
int x = 25;
int h = 20;
int y = 25;
rect(x, y, 300, h); // Top
x = x + 100;
rect(x, y + h, 300, h); // Middle
x = x - 250;
rect(x, y + h*2, 300, h); // Bottom

In code, symbols like +, –, and * are called operators. When
placed between two values, they create an expression. For
instance, 5 + 9 and 1024 – 512 are both expressions. The opera-
tors for the basic math operations are:

+ Addition

− Subtraction

* Multiplication

/ Division

= Assignment

Processing has a set of rules to define which operators take
precedence over others, meaning which calculations are made
first, second, third, and so on. These rules define the order in
which the code is run. A little knowledge about this goes a long
way toward understanding how a short line of code like this
works:

int x = 4 + 4 * 5; // Assign 24 to x

The expression 4 * 5 is evaluated first because multiplication
has the highest priority. Second, 4 is added to the product of
4 * 5 to yield 24. Last, because the assignment operator (the
equals sign) has the lowest precedence, the value 24 is assigned

Variables 39

to the variable x. This is clarified with parentheses, but the result
is the same:

int x = 4 + (4 * 5); // Assign 24 to x

If you want to force the addition to happen first, just move the
parentheses. Because parentheses have a higher precedence
than multiplication, the order is changed and the calculation is
affected:

int x = (4 + 4) * 5; // Assign 40 to x

An acronym for this order is often taught in math class:
PEMDAS, which stands for Parentheses, Exponents, Multiplica-
tion, Division, Addition, Subtraction, where parentheses have
the highest priority and subtraction the lowest. The complete
order of operations is found in Appendix C.

Some calculations are used so frequently in programming that
shortcuts have been developed; it’s always nice to save a few
keystrokes. For instance, you can add to a variable, or subtract
from it, with a single operator:

x += 10; // This is the same as x = x + 10
y -= 15; // This is the same as y = y - 15

It’s also common to add or subtract 1 from a variable, so short-
cuts exist for this as well. The ++ and −− operators do this:

x++; // This is the same as x = x + 1
y--; // This is the same as y = y - 1

More shortcuts can be found in the Processing Reference.

Repetition
As you write more programs, you’ll notice that patterns occur
when lines of code are repeated, but with slight variations. A
code structure called a for loop makes it possible to run a line of
code more than once to condense this type of repetition into
fewer lines. This makes your programs more modular and easier
to change.

40 Getting Started with Processing

Example 4-5: Do the Same Thing Over
and Over
This example has the type of pattern that can be simplified with
a for loop:

size(480, 120);
strokeWeight(8);
line(20, 40, 80, 80);
line(80, 40, 140, 80);
line(140, 40, 200, 80);
line(200, 40, 260, 80);
line(260, 40, 320, 80);
line(320, 40, 380, 80);
line(380, 40, 440, 80);

Example 4-6: Use a for Loop
The same thing can be done with a for loop, and with less code:

size(480, 120);
strokeWeight(8);
for (int i = 20; i < 400; i += 60) {
 line(i, 40, i + 60, 80);
}

The for loop is different in many ways from the code we’ve writ-
ten so far. Notice the braces, the { and } characters. The code
between the braces is called a block. This is the code that will be
repeated on each iteration of the for loop.

Inside the parentheses are three statements, separated by sem-
icolons, that work together to control how many times the code
inside the block is run. From left to right, these statements are
referred to as the initialization (init), the test, and the update:

Variables 41

for (init; test; update) {
 statements
}

The init sets the starting value, often declaring a new variable
to use within the for loop. In the earlier example, an integer
named i was declared and set to 20. The variable name i is fre-
quently used, but there’s really nothing special about it. The test
evaluates the value of this variable (here, it checks whether i
still less than 400), and the update changes the variable’s value
(adding 60 before repeating the loop). Figure 4-1 shows the
order in which they run and how they control the code state-
ments inside the block.

Figure 4-1. Flow diagram of a for loop

The test statement requires more explanation. It’s always a rela-
tional expression that compares two values with a relational
operator. In this example, the expression is “i < 400” and the
operator is the < (less than) symbol. The most common rela-
tional operators are:

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

42 Getting Started with Processing

The relational expression always evaluates to true or false. For
instance, the expression 5 > 3 is true. We can ask the question,
“Is five greater than three?” Because the answer is “yes,” we say
the expression is true. For the expression 5 < 3, we ask, “Is five
less than three?” Because the answer is “no,” we say the expres-
sion is false. When the evaluation is true, the code inside the
block is run, and when it’s false, the code inside the block is not
run and the for loop ends.

Example 4-7: Flex Your for Loop’s
Muscles
The ultimate power of working with a for loop is the ability to
make quick changes to the code. Because the code inside the
block is typically run multiple times, a change to the block is
magnified when the code is run. By modifying Example 4-6 on
page 41 only slightly, we can create a range of different patterns:

size(480, 120);
strokeWeight(2);
for (int i = 20; i < 400; i += 8) {
 line(i, 40, i + 60, 80);
}

Example 4-8: Fanning Out the Lines

size(480, 120);
strokeWeight(2);

Variables 43

for (int i = 20; i < 400; i += 20) {
 line(i, 0, i + i/2, 80);
}

Example 4-9: Kinking the Lines

size(480, 120);
strokeWeight(2);
for (int i = 20; i < 400; i += 20) {
 line(i, 0, i + i/2, 80);
 line(i + i/2, 80, i*1.2, 120);
}

Example 4-10: Embed One for Loop in
Another
When one for loop is embedded inside another, the number of
repetitions is multiplied. First, let’s look at a short example, and
then we’ll break it down in Example 4-11 on page 45:

size(480, 120);
background(0);
noStroke();
for (int y = 0; y <= height; y += 40) {
 for (int x = 0; x <= width; x += 40) {
 fill(255, 140);
 ellipse(x, y, 40, 40);

44 Getting Started with Processing

 }
}

Example 4-11: Rows and Columns
In this example, the for loops are adjacent, rather than one
embedded inside the other. The result shows that one for loop
is drawing a column of 4 circles and the other is drawing a row
of 13 circles:

size(480, 120);
background(0);
noStroke();
for (int y = 0; y < height+45; y += 40) {
 fill(255, 140);
 ellipse(0, y, 40, 40);
}
for (int x = 0; x < width+45; x += 40) {
 fill(255, 140);
 ellipse(x, 0, 40, 40);
}

When one of these for loops is placed inside the other, as in
Example 4-10 on page 44, the 4 repetitions of the first loop are
compounded with the 13 of the second in order to run the code
inside the embedded block 52 times (4×13 = 52).

Example 4-10 on page 44 is a good base for exploring many
types of repeating visual patterns. The following examples show
a couple of ways that it can be extended, but this is only a tiny
sample of what’s possible. In Example 4-12 on page 46, the code
draws a line from each point in the grid to the center of the
screen. In Example 4-13 on page 46, the ellipses shrink with
each new row and are moved to the right by adding the y coordi-
nate to the x coordinate.

Variables 45

Example 4-12: Pins and Lines

size(480, 120);
background(0);
fill(255);
stroke(102);
for (int y = 20; y <= height-20; y += 10) {
 for (int x = 20; x <= width-20; x += 10) {
 ellipse(x, y, 4, 4);
 // Draw a line to the center of the display
 line(x, y, 240, 60);
 }
}

Example 4-13: Halftone Dots

size(480, 120);
background(0);
for (int y = 32; y <= height; y += 8) {
 for (int x = 12; x <= width; x += 15) {
 ellipse(x + y, y, 16 - y/10.0, 16 - y/10.0);
 }
}

46 Getting Started with Processing

Robot 2: Variables

The variables introduced in this program make the code look
more difficult than Robot 1 (see “Robot 1: Draw” on page 32),
but now it’s much easier to modify, because numbers that
depend on one another are in a single location. For instance, the
neck can be drawn based on the bodyHeight variable. The group
of variables at the top of the code control the aspects of the
robot that we want to change: location, body height, and neck
height. You can see some of the range of possible variations in
the figure; from left to right, here are the values that correspond
to them:

y = 390
bodyHeight = 180
neckHeight = 40

y = 460
bodyHeight = 260
neckHeight = 95

y = 310
bodyHeight = 80
neckHeight = 10

y = 420
bodyHeight = 110
neckHeight = 140

When altering your own code to use variables instead of num-
bers, plan the changes carefully, then make the modifications in
short steps. For instance, when this program was written, each
variable was created one at a time to minimize the complexity of
the transition. After a variable was added and the code was run
to ensure it was working, the next variable was added:

Variables 47

int x = 60; // x coordinate
int y = 390; // y coordinate
int bodyHeight = 180; // Body height
int neckHeight = 40; // Neck height
int radius = 45;
int ny = y - bodyHeight - neckHeight - radius; // Neck y

size(170, 480);
strokeWeight(2);
background(0, 153, 204);
ellipseMode(RADIUS);

// Neck
stroke(255);
line(x+2, y-bodyHeight, x+2, ny);
line(x+12, y-bodyHeight, x+12, ny);
line(x+22, y-bodyHeight, x+22, ny);

// Antennae
line(x+12, ny, x-18, ny-43);
line(x+12, ny, x+42, ny-99);
line(x+12, ny, x+78, ny+15);

// Body
noStroke();
fill(255, 204, 0);
ellipse(x, y-33, 33, 33);
fill(0);
rect(x-45, y-bodyHeight, 90, bodyHeight-33);
fill(255, 204, 0);
rect(x-45, y-bodyHeight+17, 90, 6);

// Head
fill(0);
ellipse(x+12, ny, radius, radius);
fill(255);
ellipse(x+24, ny-6, 14, 14);
fill(0);
ellipse(x+24, ny-6, 3, 3);
fill(153, 204, 255);
ellipse(x, ny-8, 5, 5);
ellipse(x+30, ny-26, 4, 4);
ellipse(x+41, ny+6, 3, 3);

48 Getting Started with Processing

5/Response

Code that responds to input from the
mouse, keyboard, and other devices has
to run continuously. To make this hap-
pen, place the lines that update inside a
Processing function called draw().

Once and Forever
The code within the draw() block runs from top to bottom, then
repeats until you quit the program by clicking the Stop button or
closing the window. Each trip through draw() is called a frame.
(The default frame rate is 60 frames per second, but this can be
changed).

Example 5-1: The draw() Function
To see how draw() works, run this example:

void draw() {
 // Displays the frame count to the Console
 println("I'm drawing");
 println(frameCount);
}

You’ll see the following:

I'm drawing
1
I'm drawing
2
I'm drawing
3
...

In the preceding example program, the println() functions
write the text “I’m drawing” followed by the current frame count

49

as counted by the special frameCount variable (1, 2, 3, …). The
text appears in the Console, the black area at the bottom of the
Processing editor window.

Example 5-2: The setup() Function
To complement the looping draw() function, Processing has a
function called setup() that runs just once when the program
starts:

void setup() {
 println("I'm starting");
}

void draw() {
 println("I'm running");
}

When this code is run, the following is written to the Console:

I'm starting
I'm running
I'm running
I'm running
...

The text “I’m running” continues to write to the Console until
the program is stopped.

In a typical program, the code inside setup() is used to define
the starting values. The first line is always the size() function,
often followed by code to set the starting fill and stroke colors,
or perhaps to load images and fonts. (If you don’t include the
size() function, the Display Window will be 100×100 pixels.)

Now you know how to use setup() and draw(), but this isn’t the
whole story. There’s one more location to put code—you can
also place variables outside of setup() and draw(). If you create
a variable inside of setup(), you can’t use it inside of draw(), so
you need to place those variables somewhere else. Such vari-
ables are called global variables, because they can be used any-
where (“globally”) in the program. This is clearer when we list
the order in which the code is run:

50 Getting Started with Processing

1. Variables declared outside of setup() and draw() are cre-
ated.

2. Code inside setup() is run once.

3. Code inside draw() is run continuously.

Example 5-3: Global Variable
The following example puts it all together:

int x = 280;
int y = -100;
int diameter = 380;

void setup() {
 size(480, 120);
 fill(102);
}

void draw() {
 background(204);
 ellipse(x, y, diameter, diameter);
}

Follow
Now that we have code running continuously, we can track the
mouse position and use those numbers to move elements on
screen.

Example 5-4: Track the Mouse
The mouseX variable stores the x coordinate, and the mouseY vari-
able stores the y coordinate:

Response 51

void setup() {
 size(480, 120);
 fill(0, 102);
 noStroke();
}

void draw() {
 ellipse(mouseX, mouseY, 9, 9);
}

In this example, each time the code in the draw() block is run, a
new circle is drawn to the window. This image was made by
moving the mouse around to control the circle’s location.
Because the fill is set to be partially transparent, denser black
areas show where the mouse spent more time and where it
moved slowly. The circles that are spaced farther apart show
when the mouse was moving faster.

Example 5-5: The Dot Follows You
In this example, a new circle is added to the window each time
the code in draw() is run. To refresh the screen and only display
the newest circle, place a background() function at the begin-
ning of draw() before the shape is drawn:

void setup() {
 size(480, 120);
 fill(0, 102);
 noStroke();
}

void draw() {
 background(204);
 ellipse(mouseX, mouseY, 9, 9);
}

52 Getting Started with Processing

The background() function clears the entire window, so be sure
to always place it before other functions inside draw(); other-
wise, the shapes drawn before it will be erased.

Example 5-6: Draw Continuously
The pmouseX and pmouseY variables store the position of the
mouse at the previous frame. Like mouseX and mouseY, these spe-
cial variables are updated each time draw() runs. When com-
bined, they can be used to draw continuous lines by connecting
the current and most recent location:

void setup() {
 size(480, 120);
 strokeWeight(4);
 stroke(0, 102);
}

void draw() {
 line(mouseX, mouseY, pmouseX, pmouseY);
}

Example 5-7: Set Line Thickness
The pmouseX and pmouseY variables can also be used to calculate
the speed of the mouse. This is done by measuring the distance
between the current and most recent mouse location. If the
mouse is moving slowly, the distance is small, but if the mouse
starts moving faster, the distance grows. A function called
dist() simplifies this calculation, as shown in the following
example. Here, the speed of the mouse is used to set the thick-
ness of the drawn line:

Response 53

void setup() {
 size(480, 120);
 stroke(0, 102);
}

void draw() {
 float weight = dist(mouseX, mouseY, pmouseX, pmouseY);
 strokeWeight(weight);
 line(mouseX, mouseY, pmouseX, pmouseY);
}

Example 5-8: Easing Does It
In Example 5-7 on page 53, the values from the mouse are con-
verted directly into positions on the screen. But sometimes you
want the values to follow the mouse loosely—to lag behind to
create a more fluid motion. This technique is called easing. With
easing, there are two values: the current value and the value to
move toward (see Figure 5-1). At each step in the program, the
current value moves a little closer to the target value:

float x;
float easing = 0.01;

void setup() {
 size(220, 120);
}

void draw() {
 float targetX = mouseX;
 x += (targetX - x) * easing;
 ellipse(x, 40, 12, 12);
 println(targetX + " : " + x);
}

The value of the x variable is always getting closer to targetX.
The speed at which it catches up with targetX is set with the eas
ing variable, a number between 0 and 1. A small value for easing

54 Getting Started with Processing

causes more of a delay than a larger value. With an easing value
of 1, there is no delay. When you run Example 5-8 on page 54,
the actual values are shown in the Console through the
println() function. When moving the mouse, notice how the
numbers are far apart, but when the mouse stops moving, the x
value gets closer to targetX.

Figure 5-1. Easing changes the number of steps it takes to move
from one place to another

All of the work in this example happens on the line that begins
x +=. There, the difference between the target and current value
is calculated, then multiplied by the easing variable and added
to x to bring it closer to the target.

Example 5-9: Smooth Lines with
Easing
In this example, the easing technique is applied to Example 5-7
on page 53. In comparison, the lines are more fluid:

Response 55

float x;
float y;
float px;
float py;
float easing = 0.05;

void setup() {
 size(480, 120);
 stroke(0, 102);
}

void draw() {
 float targetX = mouseX;
 x += (targetX - x) * easing;
 float targetY = mouseY;
 y += (targetY - y) * easing;
 float weight = dist(x, y, px, py);
 strokeWeight(weight);
 line(x, y, px, py);
 py = y;
 px = x;
}

Click
In addition to the location of the mouse, Processing also keeps
track of whether the mouse button is pressed. The mousePressed
variable has a different value when the mouse button is pressed
and when it is not. The mousePressed variable is a data type
called boolean, which means that it has only two possible values:
true and false. The value of mousePressed is true when a button
is pressed.

56 Getting Started with Processing

Example 5-10: Click the Mouse
The mousePressed variable is used along with the if statement to
determine when a line of code will run and when it won’t. Try this
example before we explain further:

void setup() {
 size(240, 120);
 strokeWeight(30);
}

void draw() {
 background(204);
 stroke(102);
 line(40, 0, 70, height);
 if (mousePressed == true) {
 stroke(0);
 }
 line(0, 70, width, 50);
}

In this program, the code inside the if block runs only when a
mouse button is pressed. When a button is not pressed, this
code is ignored. Like the for loop discussed in “Repetition” on
page 40, the if also has a test that is evaluated to true or false:

if (test) {
 statements
}

When the test is true, the code inside the block is run; when the
test is false, the code inside the block is not run. The computer
determines whether the test is true or false by evaluating the
expression inside the parentheses. (If you’d like to refresh your
memory, the discussion of relational expressions is in Example
4-6 on page 41.)

Response 57

The == symbol compares the values on the left and right to test
whether they are equivalent. This == symbol is different from the
assignment operator, the single = symbol. The == symbol asks,
“Are these things equal?” and the = symbol sets the value of a
variable.

It’s a common mistake, even for experienced pro-
grammers, to write = in your code when you mean to
write ==. The Processing software won’t always warn
you when you do this, so be careful.

Alternatively, the test in draw() in can be written like this:

if (mousePressed) {

Boolean variables, including mousePressed, don’t need the
explicit comparison with the == operator, because they can be
only true or false.

Example 5-11: Detect When Not
Clicked
A single if block gives you the choice of running some code or
skipping it. You can extend an if block with an else block, allow-
ing your program to choose between two options. The code
inside the else block runs when the value of the if block test is
false. For instance, the stroke color for a program can be white
when the mouse button is not pressed, and can change to black
when the button is pressed:

58 Getting Started with Processing

void setup() {
 size(240, 120);
 strokeWeight(30);
}

void draw() {
 background(204);
 stroke(102);
 line(40, 0, 70, height);
 if (mousePressed) {
 stroke(0);
 } else {
 stroke(255);
 }
 line(0, 70, width, 50);
}

Example 5-12: Multiple Mouse
Buttons
Processing also tracks which button is pressed if you have more
than one button on your mouse. The mouseButton variable can
be one of three values: LEFT, CENTER, or RIGHT. To test which but-
ton was pressed, the == operator is needed, as shown here:

void setup() {
 size(120, 120);
 strokeWeight(30);
}

void draw() {
 background(204);
 stroke(102);
 line(40, 0, 70, height);
 if (mousePressed) {
 if (mouseButton == LEFT) {
 stroke(255);

Response 59

 } else {
 stroke(0);
 }
 line(0, 70, width, 50);
 }
}

A program can have many more if and else structures (see
Figure 5-2) than those found in these short examples. They can
be chained together into a long series with each testing for
something different, and if blocks can be embedded inside of
other if blocks to make more complex decisions.

60 Getting Started with Processing

Figure 5-2. The if and else structure makes decisions about
which blocks of code to run

Location
An if structure can be used with the mouseX and mouseY values
to determine the location of the cursor within the window.

Response 61

Example 5-13: Find the Cursor
For instance, this example tests to see whether the cursor is on
the left or right side of a line and then moves the line toward the
cursor:

float x;
int offset = 10;

void setup() {
 size(240, 120);
 x = width/2;
}

void draw() {
 background(204);
 if (mouseX > x) {
 x += 0.5;
 offset = -10;
 }
 if (mouseX < x) {
 x -= 0.5;
 offset = 10;
 }
 // Draw arrow left or right depending on "offset" value
 line(x, 0, x, height);
 line(mouseX, mouseY, mouseX + offset, mouseY - 10);
 line(mouseX, mouseY, mouseX + offset, mouseY + 10);
 line(mouseX, mouseY, mouseX + offset*3, mouseY);
}

To write programs that have graphical user interfaces (buttons,
checkboxes, scrollbars, etc.), we need to write code that knows
when the cursor is within an enclosed area of the screen. The
following two examples introduce how to check whether the cur-
sor is inside a circle and a rectangle. The code is written in a
modular way with variables, so it can be used to check for any
circle and rectangle by changing the values.

62 Getting Started with Processing

Example 5-14: The Bounds of a Circle
For the circle test, we use the dist() function to get the distance
from the center of the circle to the cursor, then we test to see if
that distance is less than the radius of the circle (see
Figure 5-3). If it is, we know we’re inside. In this example, when
the cursor is within the area of the circle, its size increases:

int x = 120;
int y = 60;
int radius = 12;

void setup() {
 size(240, 120);
 ellipseMode(RADIUS);
}

void draw() {
 background(204);
 float d = dist(mouseX, mouseY, x, y);
 if (d < radius) {
 radius++;
 fill(0);
 } else {
 fill(255);
 }
 ellipse(x, y, radius, radius);
}

Response 63

Figure 5-3. Circle rollover test. When the distance between the
mouse and the circle is less than the radius, the mouse is inside
the circle.

Example 5-15: The Bounds of a
Rectangle
We use another approach to test whether the cursor is inside a
rectangle. We make four separate tests to check if the cursor is
on the correct side of each edge of the rectangle, then we com-
pare each test and if they are all true, we know the cursor is
inside. This is illustrated in Figure 5-4. Each step is simple, but it
looks complicated when it’s all put together:

int x = 80;
int y = 30;

64 Getting Started with Processing

int w = 80;
int h = 60;

void setup() {
 size(240, 120);
}

void draw() {
 background(204);
 if ((mouseX > x) && (mouseX < x+w) &&
 (mouseY > y) && (mouseY < y+h)) {
 fill(0);
 } else {
 fill(255);
 }
 rect(x, y, w, h);
}

The test in the if statement is a little more complicated than
we’ve seen. Four individual tests (e.g., mouseX > x) are
combined with the logical AND operator, the && symbol, to
ensure that every relational expression in the sequence is true.
If one of them is false, the entire test is false and the fill color
won’t be set to black. This is explained further in the reference
entry for &&.

Response 65

Figure 5-4. Rectangle rollover test. When all four tests are com-
bined and true, the cursor is inside the rectangle.

Type
Processing keeps track of when any key on a keyboard is
pressed, as well as the last key pressed. Like the mousePressed
variable, the keyPressed variable is true when any key is
pressed, and false when no keys are pressed.

66 Getting Started with Processing

Example 5-16: Tap a Key
In this example, the second line is drawn only when a key is
pressed:

void setup() {
 size(240, 120);
}

void draw() {
 background(204);
 line(20, 20, 220, 100);
 if (keyPressed) {
 line(220, 20, 20, 100);
 }
}

The key variable stores the most recent key that has been
pressed. The data type for key is char, which is short for “char-
acter” but usually pronounced like the first syllable of “char-
coal.” A char variable can store any single character, which
includes letters of the alphabet, numbers, and symbols. Unlike a
string value (see Example 7-8 on page 97), which is distin-
guished by double quotes, the char data type is specified by sin-
gle quotes. This is how a char variable is declared and assigned:

char c = 'A'; // Declares and assigns 'A' to the variable c

And these attempts will cause an error:

char c = "A"; // Error! Can't assign a String to a char
char h = A; // Error! Missing the single quotes from 'A'

Unlike the boolean variable keyPressed, which reverts to false
each time a key is released, the key variable keeps its value until
the next key is pressed. The following example uses the value of
key to draw the character to the screen. Each time a new key is
pressed, the value updates and a new character draws. Some

Response 67

keys, like Shift and Alt, don’t have a visible character, so when
you press them, nothing is drawn.

Example 5-17: Draw Some Letters
This example introduces the textSize() function to set the size
of the letters, the textAlign() function to center the text on its x
coordinate, and the text() function to draw the letter. These
functions are discussed in more detail in “Fonts” on page 94:

void setup() {
 size(120, 120);
 textSize(64);
 textAlign(CENTER);
}

void draw() {
 background(0);
 text(key, 60, 80);
}

By using an if structure, we can test to see whether a specific
key is pressed and choose to draw something on screen in
response.

Example 5-18: Check for Specific Keys
In this example, we test for an H or N to be typed. We use the
comparison operator, the == symbol, to see if the key value is
equal to the characters we’re looking for:

68 Getting Started with Processing

void setup() {
 size(120, 120);
}

void draw() {
 background(204);
 if (keyPressed) {
 if ((key == 'h') || (key == 'H')) {
 line(30, 60, 90, 60);
 }
 if ((key == 'n') || (key == 'N')) {
 line(30, 20, 90, 100);
 }
 }
 line(30, 20, 30, 100);
 line(90, 20, 90, 100);
}

When we watch for H or N to be pressed, we need to check for
both the lowercase and uppercase letters in the event that
someone hits the Shift key or has the Caps Lock set. We com-
bine the two tests together with a logical OR, the || symbol. If
we translate the second if statement in this example into plain
language, it says, “If the ‘h’ key is pressed OR the ‘H’ key is
pressed.” Unlike with the logical AND (the && symbol), only one
of these expressions need be true for the entire test to be true.

Some keys are more difficult to detect, because they aren’t tied
to a particular letter. Keys like Shift, Alt, and the arrow keys are
coded and require an extra step to figure out if they are pressed.
First, we need to check if the key that’s been pressed is a coded
key, then we check the code with the keyCode variable to see
which key it is. The most frequently used keyCode values are ALT,
CONTROL, and SHIFT, as well as the arrow keys, UP, DOWN, LEFT, and
RIGHT.

Response 69

Example 5-19: Move with Arrow Keys
The following example shows how to check for the left or right
arrow keys to move a rectangle:

int x = 215;

void setup() {
 size(480, 120);
}

void draw() {
 if (keyPressed && (key == CODED)) { // If it's a coded key
 if (keyCode == LEFT) { // If it's the left arrow
 x--;
 } else if (keyCode == RIGHT) { // If it's the right arrow
 x++;
 }
 }
 rect(x, 45, 50, 50);
}

Map
The numbers that are created by the mouse and keyboard often
need to be modified to be useful within a program. For instance,
if a sketch is 1920 pixels wide and the mouseX values are used to
set the color of the background, the range of 0 to 1920 for
mouseX might need to move into a range of 0 to 255 to better
control the color. This transformation can be done with an equa-
tion or with a function called map().

Example 5-20: Map Values to a Range
In this example, the location of two lines are controlled with the
mouseX variable. The gray line is synchronized to the cursor posi-
tion, but the black line stays closer to the center of the screen to
move further away from the white line at the left and right
edges:

70 Getting Started with Processing

void setup() {
 size(240, 120);
 strokeWeight(12);
}

void draw() {
 background(204);
 stroke(102);
 line(mouseX, 0, mouseX, height); // Gray line
 stroke(0);
 float mx = mouseX/2 + 60;
 line(mx, 0, mx, height); // Black line
}

The map() function is a more general way to make this type of
change. It converts a variable from one range of numbers to
another. The first parameter is the variable to be converted, the
second and third parameters are the low and high values of that
variable, and the fourth and fifth parameters are the desired low
and high values. The map() function hides the math behind the
conversion.

Example 5-21: Map with the map()
Function
This example rewrites Example 5-20 on page 70 using map():

void setup() {
 size(240, 120);
 strokeWeight(12);
}

void draw() {
 background(204);
 stroke(102);
 line(mouseX, 0, mouseX, height); // Gray line
 stroke(0);

Response 71

 float mx = map(mouseX, 0, width, 60, 180);
 line(mx, 0, mx, height); // Black line
}

The map() function makes the code easy to read, because the
minimum and maximum values are clearly written as the
parameters. In this example, mouseX values between 0 and width
are converted to a number from 60 (when mouseX is 0) up to 180
(when mouseX is width). You’ll find the useful map() function in
many examples throughout this book.

Robot 3: Response

This program uses the variables introduced in Robot 2 (see
“Robot 2: Variables” on page 47) and makes it possible to
change them while the program runs so that the shapes
respond to the mouse. The code inside the draw() block runs
many times each second. At each frame, the variables defined
in the program change in response to the mouseX and mouse
Pressed variables.

The mouseX value controls the position of the robot with an eas-
ing technique so that movements are less instantaneous and
feel more natural. When a mouse button is pressed, the values
of neckHeight and bodyHeight change to make the robot short:

72 Getting Started with Processing

float x = 60; // x coordinate
float y = 440; // y coordinate
int radius = 45; // Head radius
int bodyHeight = 160; // Body height
int neckHeight = 70; // Neck height

float easing = 0.04;

void setup() {
 size(360, 480);
 ellipseMode(RADIUS);
}

void draw() {
 strokeWeight(2);

 int targetX = mouseX;
 x += (targetX - x) * easing;

 if (mousePressed) {
 neckHeight = 16;
 bodyHeight = 90;
 } else {
 neckHeight = 70;
 bodyHeight = 160;
 }

 float neckY = y - bodyHeight - neckHeight - radius;

 background(0, 153, 204);

 // Neck
 stroke(255);
 line(x+12, y-bodyHeight, x+12, neckY);

 // Antennae
 line(x+12, neckY, x-18, neckY-43);
 line(x+12, neckY, x+42, neckY-99);
 line(x+12, neckY, x+78, neckY+15);

 // Body
 noStroke();
 fill(255, 204, 0);
 ellipse(x, y-33, 33, 33);
 fill(0);
 rect(x-45, y-bodyHeight, 90, bodyHeight-33);

Response 73

 // Head
 fill(0);
 ellipse(x+12, neckY, radius, radius);
 fill(255);
 ellipse(x+24, neckY-6, 14, 14);
 fill(0);
 ellipse(x+24, neckY-6, 3, 3);
}

74 Getting Started with Processing

6/Translate, Rotate,
Scale

Another technique for positioning and
moving things on screen is to change the
screen coordinate system. For example,
you can move a shape 50 pixels to the
right, or you can move the location of
coordinate (0,0) 50 pixels to the
right—the visual result is the same.

Figure 6-1. Translating the coordinates

By modifying the default coordinate system, we can create dif-
ferent transformations including translation, rotation, and
scaling.

Translate
Working with transformations can be tricky, but the translate()
function is the most straightforward, so we’ll start with that. As

75

Figure 6-1 shows, this function can shift the coordinate system
left, right, up, and down.

Example 6-1: Translating Location
In this example, notice that the rectangle is drawn at coordinate
(0,0), but it is moved around on the screen, because it is affec-
ted by translate():

void setup() {
 size(120, 120);
}

void draw() {
 translate(mouseX, mouseY);
 rect(0, 0, 30, 30);
}

The translate() function sets the (0,0) coordinate of the screen
to the mouse location (mouseX and mouseY). Each time
the draw() block repeats, the rect() is drawn at the new ori-
gin, derived from the current mouse location.

Example 6-2: Multiple Translations
After a transformation is made, it is applied to all drawing func-
tions that follow. Notice what happens when a second translate
function is added to control a second rectangle:

76 Getting Started with Processing

void setup() {
 size(120, 120);
}

void draw() {
 translate(mouseX, mouseY);
 rect(0, 0, 30, 30);
 translate(35, 10);
 rect(0, 0, 15, 15);
}

The values for the translate() functions are added together.
The smaller rectangle was translated the amount of mouseX + 35
and mouseY + 10. The x and y coordinates for both rectangles are
(0,0), but the translate() functions move them to other posi-
tions on screen.

However, even though the transformations accumulate within
the draw() block, they are reset each time draw() starts again at
the top.

Rotate
The rotate() function rotates the coordinate system. It has one
parameter, which is the angle (in radians) to rotate. It always
rotates relative to (0,0), known as rotating around the origin.
Figure 3-2 in Example 3-7 on page 18 shows the radians angle
values. Figure 6-2 shows the difference between rotating with
positive and negative numbers.

Figure 6-2. Rotating the coordinates

Translate, Rotate, Scale 77

Example 6-3: Corner Rotation
To rotate a shape, first define the rotation angle with rotate(),
then draw the shape. In this sketch, the amount to rotate
(mouseX / 100.0) will be between 0 and 1.2 to define the rotation
angle because mouseX will be between 0 and 120, the width of
the Display Window specified with the size() function. Note
that you should divide by 100.0 not 100, because of how num-
bers work in Processing (see “Making Variables” on page 36).

void setup() {
 size(120, 120);
}

void draw() {
 rotate(mouseX / 100.0);
 rect(40, 30, 160, 20);
}

Example 6-4: Center Rotation
To rotate a shape around its own center, it must be drawn with
coordinate (0,0) in the middle. In this example, because the
shape is 160 wide and 20 high as defined in rect(), it is drawn at
the coordinate (–80, –10) to place (0,0) at the center of the
shape:

void setup() {
 size(120, 120);

78 Getting Started with Processing

}

void draw() {
 rotate(mouseX / 100.0);
 rect(-80, -10, 160, 20);
}

The previous pair of examples showed how to rotate around
coordinate (0,0), but what about other possibilities? You can
use the translate() and rotate() functions for more control.
When they are combined, the order in which they appear affects
the result. If the coordinate system is first moved and then rota-
ted, that is different than first rotating the coordinate system,
then moving it.

Example 6-5: Translation, then
Rotation
To spin a shape around its center point at a place on screen
away from the origin, first use translate() to move to the loca-
tion where you’d like the shape, then call rotate(), and then
draw the shape with its center at coordinate (0,0):

float angle = 0;

void setup() {
 size(120, 120);
}

void draw() {
 translate(mouseX, mouseY);
 rotate(angle);
 rect(-15, -15, 30, 30);
 angle += 0.1;
}

Translate, Rotate, Scale 79

Example 6-6: Rotation, Then
Translation
The following example is identical to Example 6-5 on page 79,
except that translate() and rotate() are reversed. The shape
now rotates around the upper-left corner of the Display Window,
with the distance from the corner set by translate():

float angle = 0.0;

void setup() {
 size(120, 120);
}

void draw() {
 rotate(angle);
 translate(mouseX, mouseY);
 rect(-15, -15, 30, 30);
 angle += 0.1;
}

Another option is to use the rectMode(), ellipse
Mode(), imageMode(), and shapeMode() functions,
which make it easier to draw shapes from their cen-
ter. You can read about these functions in the Pro-
cessing Reference.

Example 6-7: An Articulating Arm
In this example, we’ve put together a series of translate() and
rotate() functions to create a linked arm that bends back and
forth. Each translate() further moves the position of the lines,
and each rotate() adds to the previous rotation to bend more:

80 Getting Started with Processing

float angle = 0.0;
float angleDirection = 1;
float speed = 0.005;

void setup() {
 size(120, 120);
}

void draw() {
 background(204);
 translate(20, 25); // Move to start position
 rotate(angle);
 strokeWeight(12);
 line(0, 0, 40, 0);
 translate(40, 0); // Move to next joint
 rotate(angle * 2.0);
 strokeWeight(6);
 line(0, 0, 30, 0);
 translate(30, 0); // Move to next joint
 rotate(angle * 2.5);
 strokeWeight(3);
 line(0, 0, 20, 0);

 angle += speed * angleDirection;
 if ((angle > QUARTER_PI) || (angle < 0)) {
 angleDirection = -angleDirection;
 }
}

The angle variable grows from 0 to QUARTER_PI (one quarter of
the value of pi), then decreases until it is less than zero, then the
cycle repeats. The value of the angleDirection variable is always
1 or –1 to make the value of angle correspondingly increase or
decrease.

Translate, Rotate, Scale 81

Scale
The scale() function stretches the coordinates on the screen.
Because the coordinates expand or contract as the scale
changes, everything drawn to the Display Window increases or
decreases in dimension. Use scale(1.5) to make everything
150% of their original size, or scale(3) to make them three
times larger. Using scale(1) would have no effect, because
everything would remain 100% of the original. To make things
half their size, use scale(0.5).

Figure 6-3. Scaling the coordinates

Example 6-8: Scaling
Like rotate(), the scale() function transforms from the origin.
Therefore, as with rotate(), to scale a shape from its center,
translate to its location, scale, and then draw with the center at
coordinate (0,0):

void setup() {
 size(120, 120);
}

82 Getting Started with Processing

void draw() {
 translate(mouseX, mouseY);
 scale(mouseX / 60.0);
 rect(-15, -15, 30, 30);
}

Example 6-9: Keeping Strokes
Consistent
From the thick lines in Example 6-8 on page 82, you can see how
the scale() function affects the stroke weight. To maintain a
consistent stroke weight as a shape scales, divide the desired
stroke weight by the scalar value:

void setup() {
 size(120, 120);
}

void draw() {
 translate(mouseX, mouseY);
 float scalar = mouseX / 60.0;
 scale(scalar);
 strokeWeight(1.0 / scalar);
 rect(-15, -15, 30, 30);
}

Push and Pop
To isolate the effects of a transformation so they don’t affect
later commands, use the pushMatrix() and popMatrix() func-
tions. When pushMatrix() is run, it saves a copy of the current
coordinate system and then restores that system after
popMatrix(). This is useful when transformations are needed for
one shape, but not wanted for another.

Translate, Rotate, Scale 83

Example 6-10: Isolating
Transformations
In this example, the smaller rectangle always draws in the same
position because the translate(mouseX, mouseY) is cancelled by
the popMatrix():

void setup() {
 size(120, 120);
}

void draw() {
 pushMatrix();
 translate(mouseX, mouseY);
 rect(0, 0, 30, 30);
 popMatrix();
 translate(35, 10);
 rect(0, 0, 15, 15);
}

The pushMatrix() and popMatrix() functions are
always used in pairs. For every pushMatrix(), you
need to have a matching popMatrix().

84 Getting Started with Processing

Robot 4: Translate, Rotate, Scale

The translate(), rotate(), and scale() functions are all utilized
in this modified robot sketch. In relation to “Robot 3: Response”
on page 72, translate() is used to make the code easier to read.
Here, notice how the x value no longer needs to be added to
each drawing function because translate() moves everything.

Similarly, the scale() function is used to set the dimensions for
the entire robot. When the mouse is not pressed, the size is set
to 60%, and when it is pressed, it goes to 100% in relation to the
original coordinates.

The rotate() function is used within a loop to draw a line, rotate
it a little, then draw a second line, then rotate a little more, and
so on until the loop has drawn 30 lines half-way around a circle
to style a lovely head of robot hair:

float x = 60; // x coordinate
float y = 440; // y coordinate
int radius = 45; // Head radius
int bodyHeight = 180; // Body height
int neckHeight = 40; // Neck height

float easing = 0.04;

Translate, Rotate, Scale 85

void setup() {
 size(360, 480);
 ellipseMode(RADIUS);
}

void draw() {
 strokeWeight(2);

 float neckY = -1 * (bodyHeight + neckHeight + radius);

 background(0, 153, 204);

 translate(mouseX, y); // Move all to (mouseX, y)

 if (mousePressed) {
 scale(1.0);
 } else {
 scale(0.6); // 60% size when mouse is pressed
 }

 // Body
 noStroke();
 fill(255, 204, 0);
 ellipse(0, -33, 33, 33);
 fill(0);
 rect(-45, -bodyHeight, 90, bodyHeight-33);

 // Neck
 stroke(255);
 line(12, -bodyHeight, 12, neckY);

 // Hair
 pushMatrix();
 translate(12, neckY);
 float angle = -PI/30.0;
 for (int i = 0; i <= 30; i++) {
 line(80, 0, 0, 0);
 rotate(angle);
 }
 popMatrix();

 // Head
 noStroke();
 fill(0);
 ellipse(12, neckY, radius, radius);
 fill(255);

86 Getting Started with Processing

 ellipse(24, neckY-6, 14, 14);
 fill(0);
 ellipse(24, neckY-6, 3, 3);
}

Translate, Rotate, Scale 87

7/Media

Processing is capable of drawing more
than simple lines and shapes. It’s time to
learn how to load raster images, vector
files, and fonts into our programs to
extend the visual possibilities to photog-
raphy, detailed diagrams, and diverse
typefaces.
Processing uses a folder named data to store such files, so that
you never have to think about their location when moving
sketches around and exporting them. We’ve posted media files
online for you to use in this chapter’s examples:
http://www.processing.org/learning/books/media.zip.

Download this file, unzip it to the desktop (or somewhere else
convenient), and make a mental note of its location.

To unzip on Mac OS X, just double-click the file, and
it will create a folder named media. On Windows,
double-click the media.zip file, which will open a new
window. In that window, drag the media folder to the
desktop.

Create a new sketch, and select Add File from the Sketch menu.
Find the lunar.jpg file from the media folder that you just unzip-
ped and select it. If everything went well, the Message Area will
read “One file added to the sketch.”

To check for the file, select Show Sketch Folder in the Sketch
menu. You should see a folder named data, with a copy of
lunar.jpg inside. When you add a file to the sketch, the data

89

http://www.processing.org/learning/books/media.zip

folder will automatically be created. Instead of using the Add
File menu command, you can do the same thing by dragging
files into the editor area of the Processing window. The files will
be copied to the data folder the same way (and the data folder
will be created if none exists).

You can also create the data folder outside of Processing and
copy files there yourself. You won’t get the message saying that
files have been added, but this is a helpful method when you’re
working with large numbers of files.

On Windows and Mac OS X, extensions are hidden
by default. It’s a good idea to change that option so
that you always see the full name of your files. On
Mac OS X, select Preferences from the Finder menu,
and then make sure “Show all filename extensions”
is checked in the Advanced tab. On Windows, look
for Folder Options, and set the option there.

Images
There are three steps to follow before you can draw an image to
the screen:

1. Add the image to the sketch’s data folder (instructions given
previously).

2. Create a PImage variable to store the image.

3. Load the image into the variable with loadImage().

Example 7-1: Load an Image
After all three steps are done, you can draw the image to the
screen with the image() function. The first parameter to image()
specifies the image to draw; the second and third set the x and y
coordinates:

90 Getting Started with Processing

PImage img;

void setup() {
 size(480, 120);
 img = loadImage("lunar.jpg");
}

void draw() {
 image(img, 0, 0);
}

Optional fourth and fifth parameters set the width and height to
draw the image. If the fourth and fifth parameters are not used,
the image is drawn at the size at which it was created.

These next examples show how to work with more than one
image in the same program and how to resize an image.

Example 7-2: Load More Images
For this example, you’ll need to add the capsule.jpg file (found in
the media folder you downloaded) to your sketch using one of
the methods described earlier:

PImage img1;
PImage img2;

void setup() {
 size(480, 120);
 img1 = loadImage("lunar.jpg");

Media 91

 img2 = loadImage("capsule.jpg");
}

void draw() {
 image(img1, -120, 0);
 image(img1, 130, 0, 240, 120);
 image(img2, 300, 0, 240, 120);
}

Example 7-3: Mousing Around with
Images
When the mouseX and mouseY values are used as part of the
fourth and fifth parameters of image(), the image size changes
as the mouse moves:

PImage img;

void setup() {
 size(480, 120);
 img = loadImage("lunar.jpg");
}

void draw() {
 background(0);
 image(img, 0, 0, mouseX * 2, mouseY * 2);
}

When an image is displayed larger or smaller than its
actual size, it may become distorted. Be careful to
prepare your images at the sizes they will be used.
When the display size of an image is changed with
the image() function, the actual image on the hard
drive doesn’t change.

92 Getting Started with Processing

Processing can load and display raster images in the JPEG,
PNG, and GIF formats. (Vector shapes in the SVG format can be
displayed in a different way, as described in “Shapes” on page
97 later in this chapter.) You can convert images to the JPEG,
PNG, and GIF formats using programs like GIMP and Photo-
shop. Most digital cameras save JPEG images that are much
larger than the drawing area of most Processing sketches, so
resizing such images before they are added to the data folder
will make your sketches run more efficiently.

GIF and PNG images support transparency, which means that
pixels can be invisible or partially visible (recall the discussion of
color() and alpha values in Example 3-17 on page 26). GIF
images have 1-bit transparency, which means that pixels are
either fully opaque or fully transparent. PNG images have 8-bit
transparency, which means that each pixel can have a variable
level of opacity. The following examples show the difference,
using the clouds.gif and clouds.png files found in the media
folder that you downloaded. Be sure to add them to the sketch
before trying each example.

Example 7-4: Transparency with
a GIF

PImage img;

void setup() {
 size(480, 120);
 img = loadImage("clouds.gif");
}
void draw() {
 background(255);
 image(img, 0, 0);
 image(img, 0, mouseY * -1);
}

Media 93

Example 7-5: Transparency with
a PNG

PImage img;

void setup() {
 size(480, 120);
 img = loadImage("clouds.png");
}

void draw() {
 background(204);
 image(img, 0, 0);
 image(img, 0, mouseY * -1);
}

Remember to include the file extensions .gif, .jpg,
or .png when you load the image. Also, be sure that
the image name is typed exactly as it appears in the
file, including the case of the letters. And if you
missed it, read the note earlier in this chapter about
making sure that the file extensions are visible on
Mac OS X and Windows.

Fonts
The Processing software can display text using TrueType (.ttf)
and OpenType (.otf) fonts, as well as a custom bitmap format
called VLW. For this introduction, we will load a TrueType font
from the data folder, the SourceCodePro-Regular.ttf font
included in the media folder that you downloaded earlier.

94 Getting Started with Processing

The following websites are good places to find fonts
with open licenses to use with Processing:

• Google Fonts
• The Open Font Library
• The League of Moveable Type

Now it’s possible to load the font and add words to a sketch.
This part is similar to working with images, but there’s one extra
step:

1. Add the font to the sketch’s data folder (instructions given
previously).

2. Create a PFont variable to store the font.

3. Create the font and assign it to a variable with createFont().
This reads the font file, and creates a version of it at a spe-
cific size that can be used by Processing.

4. Use the textFont() function to set the current font.

Example 7-6: Drawing with Fonts
Now you can draw these letters to the screen with the text()
 function, and you can change the size with textSize():

PFont font;

void setup() {
 size(480, 120);
 font = createFont("SourceCodePro-Regular.ttf", 32);
 textFont(font);
}

Media 95

http://www.google.com/fonts
http://openfontlibrary.org
http://www.theleagueofmoveabletype.com

void draw() {
 background(102);
 textSize(32);
 text("That’s one small step for man...", 25, 60);
 textSize(16);
 text("That’s one small step for man...", 27, 90);
}

The first parameter to text() is the character(s) to draw to the
screen. (Notice that the characters are enclosed within quotes.)
The second and third parameters set the horizontal and vertical
location. The location is relative to the baseline of the text (see
Figure 7-1).

Figure 7-1. Typography coordinates

Example 7-7: Draw Text in a Box
You can also set text to draw inside a box by adding fourth and
fifth parameters that specify the width and height of the box:

PFont font;

void setup() {
 size(480, 120);
 font = createFont("SourceCodePro-Regular.ttf", 24);
 textFont(font);
}

96 Getting Started with Processing

void draw() {
 background(102);
 text("That’s one small step for man...", 26, 24, 240, 100);
}

Example 7-8: Store Text in a String
In the previous example, the words inside the text() function
start to make the code difficult to read. We can store these
words in a variable to make the code more modular. The String
data type is used to store text data. Here’s a new version of the
previous example that uses a String:

PFont font;
String quote = "That's one small step for man...";

void setup() {
 size(480, 120);
 font = createFont("SourceCodePro-Regular.ttf", 24);
 textFont(font);
}

void draw() {
 background(102);
 text(quote, 26, 24, 240, 100);
}

There’s a set of additional functions that affect how letters are
displayed on screen. They are explained, with examples, in the
Typography category of the Processing Reference.

Shapes
If you make vector shapes in a program like Inkscape or Illustra-
tor, you can load them into Processing directly. This is helpful for
shapes you’d rather not build with Processing’s drawing func-
tions. As with images, you need to add them to your sketch
before they can be loaded.

There are three steps to load and draw an SVG file:

1. Add an SVG file to the sketch’s data folder.

2. Create a PShape variable to store the vector file.

Media 97

3. Load the vector file into the variable with loadShape().

Example 7-9: Draw with Shapes
After following these steps, you can draw the image to the
screen with the shape() function:

PShape network;

void setup() {
 size(480, 120);
 network = loadShape("network.svg");
}

void draw() {
 background(0);
 shape(network, 30, 10);
 shape(network, 180, 10, 280, 280);
}

The parameters for shape() are similar to image(). The first
parameter tells shape() which SVG to draw and the next pair
sets the position. Optional fourth and fifth parameters set the
width and height.

Example 7-10: Scaling Shapes
Unlike raster images, vector shapes can be scaled to any size
without losing resolution. In this example, the shape is scaled
based on the mouseX variable, and the shapeMode() function is
used to draw the shape from its center, rather than the default
position, the upper-left corner:

98 Getting Started with Processing

PShape network;

void setup() {
 size(240, 120);
 shapeMode(CENTER);
 network = loadShape("network.svg");
}

void draw() {
 background(0);
 float diameter = map(mouseX, 0, width, 10, 800);
 shape(network, 120, 60, diameter, diameter);
}

Processing doesn’t support all SVG features. See the
entry for PShape in the Processing Reference for
more details.

Example 7-11: Creating a New Shape
In addition to loading shapes through the data folder, new
shapes can be created with code through the createShape()
function. In the next example, one of the creatures from Exam-
ple 3-21 on page 29 is built in the setup() function. Once this
happens, the shape can be used anywhere in the program with
the shape() function:

Media 99

PShape dino;

void setup() {
 size(480, 120);
 dino = createShape();
 dino.beginShape();
 dino.fill(153, 176, 180);
 dino.vertex(50, 120);
 dino.vertex(100, 90);
 dino.vertex(110, 60);
 dino.vertex(80, 20);
 dino.vertex(210, 60);
 dino.vertex(160, 80);
 dino.vertex(200, 90);
 dino.vertex(140, 100);
 dino.vertex(130, 120);
 dino.endShape();
}

void draw() {
 background(204);
 translate(mouseX - 120, 0);
 shape(dino, 0, 0);
}

Making a custom PShape with createShape() can make sketches
more efficient when the same shape is drawn many times.

100 Getting Started with Processing

Robot 5: Media

Unlike the robots created from lines and rectangles drawn in
Processing in the previous chapters, these robots were created
with a vector drawing program. For some shapes, it’s often eas-
ier to point and click in a software tool like Inkscape or Illustrator
than to define the shapes with coordinates in code.

There’s a trade-off to selecting one image creation technique
over another. When shapes are defined in Processing, there’s
more flexibility to modify them while the program is running. If
the shapes are defined elsewhere and then loaded into Process-
ing, changes are limited to the position, angle, and size. When
loading each robot from an SVG file, as this example shows, the
variations featured in Robot 2 (see “Robot 2: Variables” on page
47) are impossible.

Images can be loaded into a program to bring in visuals created
in other programs or captured with a camera. With this image in
the background, our robots are now exploring for life-forms in
Norway at the dawn of the 20th century.

The SVG and PNG files used in this example can be downloaded
from http://www.processing.org/learning/books/media.zip:

Media 101

http://www.processing.org/learning/books/media.zip

PShape bot1;
PShape bot2;
PShape bot3;
PImage landscape;

float easing = 0.05;
float offset = 0;

void setup() {
 size(720, 480);
 bot1 = loadShape("robot1.svg");
 bot2 = loadShape("robot2.svg");
 bot3 = loadShape("robot3.svg");
 landscape = loadImage("alpine.png");
}

void draw() {
 // Set the background to the "landscape" image, this image
 // must be the same width and height as the program
 background(landscape);

 // Set the left/right offset and apply easing to make
 // the transition smooth
 float targetOffset = map(mouseY, 0, height, -40, 40);
 offset += (targetOffset - offset) * easing;

 // Draw the left robot
 shape(bot1, 85 + offset, 65);

 // Draw the right robot smaller and give it a smaller offset
 float smallerOffset = offset * 0.7;
 shape(bot2, 510 + smallerOffset, 140, 78, 248);

 // Draw the smallest robot, give it a smaller offset
 smallerOffset *= -0.5;
 shape(bot3, 410 + smallerOffset, 225, 39, 124);
}

102 Getting Started with Processing

8/Motion

Like a flip book, animation on screen is
created by drawing an image, then draw-
ing a slightly different image, then
another, and so on. The illusion of fluid
motion is created by persistence of
vision. When a set of similar images is
presented at a fast enough rate, our
brains translate these images into
motion.

Frames
To create smooth motion, Processing tries to run the code
inside draw() at 60 frames each second. A frame is one trip
through the draw() and the frame rate is how many frames are
drawn each second. Therefore, a program that draws 60 frames
each second means the program runs the entire code inside
draw() 60 times each second.

Example 8-1: See the Frame Rate
To confirm the frame rate, run this program and watch the val-
ues print to the Console (the frameRate variable keeps track of
the program’s speed):

void draw() {
 println(frameRate);
}

103

Example 8-2: Set the Frame Rate
The frameRate() function changes the speed at which the pro-
gram runs. To see the result, uncomment different versions of
frameRate() in this example:

void setup() {
 frameRate(30); // Thirty frames each second
 //frameRate(12); // Twelve frames each second
 //frameRate(2); // Two frames each second
 //frameRate(0.5); // One frame every two seconds
}

void draw() {
 println(frameRate);
}

Processing tries to run the code at 60 frames each
second, but if it takes longer than 1/60th of a sec-
ond to run the draw() method, then the frame rate
will decrease. The frameRate() function specifies
only the maximum frame rate, and the actual frame
rate for any program depends on the computer that
is running the code.

Speed and Direction
To create fluid motion examples, we use a data type called
float. This type of variable stores numbers with decimal places,
which provide more resolution for working with motion. For
instance, when using int, the slowest you can move each frame
is one pixel at a time (1, 2, 3, 4, . . .), but with float, you can
move as slowly as you want (1.01, 1.01, 1.02, 1.03, . . .).

Example 8-3: Move a Shape
The following example moves a shape from left to right by
updating the x variable:

104 Getting Started with Processing

int radius = 40;
float x = -radius;
float speed = 0.5;

void setup() {
 size(240, 120);
 ellipseMode(RADIUS);
}

void draw() {
 background(0);
 x += speed; // Increase the value of x
 arc(x, 60, radius, radius, 0.52, 5.76);
}

When you run this code, you’ll notice the shape moves off the
right of the screen when the value of the x variable is greater
than the width of the window. The value of x continues to
increase, but the shape is no longer visible.

Example 8-4: Wrap Around
There are many alternatives to this behavior, which you can
choose from according to your preference. First, we’ll extend the
code to show how to move the shape back to the left edge of the
screen after it disappears off the right. In this case, picture the
screen as a flattened cylinder, with the shape moving around
the outside to return to its starting point:

Motion 105

int radius = 40;
float x = -radius;
float speed = 0.5;

void setup() {
 size(240, 120);
 ellipseMode(RADIUS);
}

void draw() {
 background(0);
 x += speed; // Increase the value of x
 if (x > width+radius) { // If the shape is off screen,
 x = -radius; // move to the left edge
 }
 arc(x, 60, radius, radius, 0.52, 5.76);
}

On each trip through draw(), the code tests to see if the value of
x has increased beyond the width of the screen (plus the radius
of the shape). If it has, we set the value of x to a negative value,
so that as it continues to increase, it will enter the screen from
the left. See Figure 8-1 for a diagram of how it works.

Figure 8-1. Testing for the edges of the window

106 Getting Started with Processing

Example 8-5: Bounce Off the Wall
In this example, we’ll extend Example 8-3 on page 104 to have
the shape change directions when it hits an edge, instead of
wrapping around to the left. To make this happen, we add a new
variable to store the direction of the shape. A direction value of 1
moves the shape to the right, and a value of –1 moves the shape
to the left:

int radius = 40;
float x = 110;
float speed = 0.5;
int direction = 1;

void setup() {
 size(240, 120);
 ellipseMode(RADIUS);
}

void draw() {
 background(0);
 x += speed * direction;
 if ((x > width-radius) || (x < radius)) {
 direction = -direction; // Flip direction
 }
 if (direction == 1) {
 arc(x, 60, radius, radius, 0.52, 5.76); // Face right
 } else {
 arc(x, 60, radius, radius, 3.67, 8.9); // Face left
 }
}

When the shape reaches an edge, this code flips the shape’s
direction by changing the sign of the direction variable. For
example, if the direction variable is positive when the shape
reaches an edge, the code flips it to negative.

Motion 107

Tweening
Sometimes you want to animate a shape to go from one point
on screen to another. With a few lines of code, you can set up
the start position and the stop position, then calculate the in-
between (tween) positions at each frame.

Example 8-6: Calculate Tween
Positions
To make this example code modular, we’ve created a group of
variables at the top. Run the code a few times and change the
values to see how this code can move a shape from any location
to any other at a range of speeds. Change the step variable to
alter the speed:

int startX = 20; // Initial x coordinate
int stopX = 160; // Final x coordinate
int startY = 30; // Initial y coordinate
int stopY = 80; // Final y coordinate
float x = startX; // Current x coordinate
float y = startY; // Current y coordinate
float step = 0.005; // Size of each step (0.0 to 1.0)
float pct = 0.0; // Percentage traveled (0.0 to 1.0)

void setup() {
 size(240, 120);
}

void draw() {
 background(0);
 if (pct < 1.0) {
 x = startX + ((stopX-startX) * pct);
 y = startY + ((stopY-startY) * pct);
 pct += step;
 }

108 Getting Started with Processing

 ellipse(x, y, 20, 20);
}

Random
Unlike the smooth, linear motion common to computer graph-
ics, motion in the physical world is usually idiosyncratic. For
instance, think of a leaf floating to the ground, or an ant crawling
over rough terrain. We can simulate the unpredictable qualities
of the world by generating random numbers. The random() func-
tion calculates these values; we can set a range to tune the
amount of disarray in a program.

Example 8-7: Generate Random
Values
The following short example prints random values to the Con-
sole, with the range limited by the position of the mouse. The
random() function always returns a floating-point value, so be
sure the variable on the left side of the assignment operator (=)
is a float as it is here:

void draw() {
 float r = random(0, mouseX);
 println(r);
}

Example 8-8: Draw Randomly
The following example builds on Example 8-7 on page 109; it
uses the values from random() to change the position of lines on
screen. When the mouse is at the left of the screen, the change
is small; as it moves to the right, the values from random()
increase and the movement becomes more exaggerated.
Because the random() function is inside the for loop, a new ran-
dom value is calculated for each point of every line:

Motion 109

void setup() {
 size(240, 120);
}

void draw() {
 background(204);
 for (int x = 20; x < width; x += 20) {
 float mx = mouseX / 10;
 float offsetA = random(-mx, mx);
 float offsetB = random(-mx, mx);
 line(x + offsetA, 20, x - offsetB, 100);
 }
}

Example 8-9: Move Shapes Randomly
When used to move shapes around on screen, random values
can generate images that are more natural in appearance. In the
following example, the position of the circle is modified by ran-
dom values on each trip through draw(). Because the back
ground() function is not used, past locations are traced:

float speed = 2.5;
int diameter = 20;
float x;
float y;

void setup() {
 size(240, 120);
 x = width/2;

110 Getting Started with Processing

 y = height/2;
}

void draw() {
 x += random(-speed, speed);
 y += random(-speed, speed);
 ellipse(x, y, diameter, diameter);
}

If you watch this example long enough, you may see the circle
leave the window and come back. This is left to chance, but we
could add a few if structures or use the constrain() function to
keep the circle from leaving the screen. The constrain() func-
tion limits a value to a specific range, which can be used to keep
x and y within the boundaries of the Display Window. By replac-
ing the draw() in the preceding code with the following, you’ll
ensure that the ellipse will remain on the screen:

void draw() {
 x += random(-speed, speed);
 y += random(-speed, speed);
 x = constrain(x, 0, width);
 y = constrain(y, 0, height);
 ellipse(x, y, diameter, diameter);
}

The randomSeed() function can be used to force
random() to produce the same sequence of numbers
each time a program is run. This is described further
in the Processing Reference.

Timers
Every Processing program counts the amount of time that has
passed since it was started. It counts in milliseconds (thou-
sandths of a second), so after 1 second, the counter is at 1,000;
after 5 seconds, it’s at 5,000; and after 1 minute, it’s at 60,000.
We can use this counter to trigger animations at specific times.
The millis() function returns this counter value.

Motion 111

Example 8-10: Time Passes
You can watch the time pass when you run this program:

void draw() {
 int timer = millis();
 println(timer);
}

Example 8-11: Triggering Timed
Events
When paired with an if block, the values from millis() can be
used to sequence animation and events within a program. For
instance, after two seconds have elapsed, the code inside the if
block can trigger a change. In this example, variables called
time1 and time2 determine when to change the value of the x
variable:

int time1 = 2000;
int time2 = 4000;
float x = 0;

void setup() {
 size(480, 120);
}

void draw() {
 int currentTime = millis();
 background(204);
 if (currentTime > time2) {
 x -= 0.5;
 } else if (currentTime > time1) {
 x += 2;
 }
 ellipse(x, 60, 90, 90);
}

112 Getting Started with Processing

Circular
If you’re a trigonometry ace, you already know how amazing the
sine and cosine functions are. If you’re not, we hope the next
examples will trigger your interest. We won’t discuss the math in
detail here, but we’ll show a few applications to generate fluid
motion.

Figure 8-2 shows a visualization of sine wave values and how
they relate to angles. At the top and bottom of the wave, notice
how the rate of change (the change on the vertical axis) slows
down, stops, then switches direction. It’s this quality of the
curve that generates interesting motion.

The sin() and cos() functions in Processing return values
between –1 and 1 for the sine or cosine of the specified angle.
Like arc(), the angles must be given in radian values (see Exam-
ple 3-7 on page 18 and Example 3-8 on page 19 for a reminder of
how radians work). To be useful for drawing, the float values
returned by sin() and cos() are usually multiplied by a larger
value.

Motion 113

Figure 8-2. A sine wave is created by tracing the sine values of
an angle that moves around a circle

114 Getting Started with Processing

Example 8-12: Sine Wave Values
This example shows how values for sin() cycle from −1 to 1 as
the angle increases. With the map() function, the sinval variable
is converted from this range to values from 0 and 255. This new
value is used to set the background color of the window:

float angle = 0.0;

void draw() {
 float sinval = sin(angle);
 println(sinval);
 float gray = map(sinval, -1, 1, 0, 255);
 background(gray);
 angle += 0.1;
}

Example 8-13: Sine Wave Movement
This example shows how these values can be converted into
movement:

float angle = 0.0;
float offset = 60;
float scalar = 40;
float speed = 0.05;

void setup() {
 size(240, 120);
}

void draw() {
 background(0);
 float y1 = offset + sin(angle) * scalar;
 float y2 = offset + sin(angle + 0.4) * scalar;
 float y3 = offset + sin(angle + 0.8) * scalar;
 ellipse(80, y1, 40, 40);
 ellipse(120, y2, 40, 40);

Motion 115

 ellipse(160, y3, 40, 40);
 angle += speed;
}

Example 8-14: Circular Motion
When sin() and cos() are used together, they can produce cir-
cular motion. The cos() values provide the x coordinates, and
the sin() values provide the y coordinates. Both are multiplied
by a variable named scalar to change the radius of the move-
ment and summed with an offset value to set the center of the
circular motion:

float angle = 0.0;
float offset = 60;
float scalar = 30;
float speed = 0.05;

void setup() {
 size(120, 120);
}

void draw() {
 float x = offset + cos(angle) * scalar;
 float y = offset + sin(angle) * scalar;
 ellipse(x, y, 40, 40);
 angle += speed;
}

Example 8-15: Spirals
A slight change made to increase the scalar value at each frame
produces a spiral, rather than a circle:

116 Getting Started with Processing

float angle = 0.0;
float offset = 60;
float scalar = 2;
float speed = 0.05;

void setup() {
 size(120, 120);
 fill(0);
}

void draw() {
 float x = offset + cos(angle) * scalar;
 float y = offset + sin(angle) * scalar;
 ellipse(x, y, 2, 2);
 angle += speed;
 scalar += speed;
}

Motion 117

Robot 6: Motion

In this example, the techniques for random and circular motion
are applied to the robot. The background() was removed to
make it easier to see how the robot’s position and body change.

At each frame, a random number between –4 and 4 is added to
the x coordinate, and a random number between –1 and 1 is
added to the y coordinate. This causes the robot to move more
from left to right than top to bottom. Numbers calculated from
the sin() function change the height of the neck so it oscillates
between 50 and 110 pixels high:

float x = 180; // x coordinate
float y = 400; // y coordinate
float bodyHeight = 153; // Body height
float neckHeight = 56; // Neck height
float radius = 45; // Head radius
float angle = 0.0; // Angle for motion

void setup() {
 size(360, 480);
 ellipseMode(RADIUS);
 background(0, 153, 204); // Blue background
}

118 Getting Started with Processing

void draw() {
 // Change position by a small random amount
 x += random(-4, 4);
 y += random(-1, 1);

 // Change height of neck
 neckHeight = 80 + sin(angle) * 30;
 angle += 0.05;

 // Adjust the height of the head
 float ny = y - bodyHeight - neckHeight - radius;

 // Neck
 stroke(255);
 line(x+2, y-bodyHeight, x+2, ny);
 line(x+12, y-bodyHeight, x+12, ny);
 line(x+22, y-bodyHeight, x+22, ny);

 // Antennae
 line(x+12, ny, x-18, ny-43);
 line(x+12, ny, x+42, ny-99);
 line(x+12, ny, x+78, ny+15);

 // Body
 noStroke();
 fill(255, 204, 0);
 ellipse(x, y-33, 33, 33);
 fill(0);
 rect(x-45, y-bodyHeight, 90, bodyHeight-33);
 fill(255, 204, 0);
 rect(x-45, y-bodyHeight+17, 90, 6);

 // Head
 fill(0);
 ellipse(x+12, ny, radius, radius);
 fill(255);
 ellipse(x+24, ny-6, 14, 14);
 fill(0);
 ellipse(x+24, ny-6, 3, 3);
}

Motion 119

9/Functions

Functions are the basic building blocks
for Processing programs. They have
appeared in every example we’ve presen-
ted. For instance, we’ve frequently used
the size() function, the line() function,
and the fill() function. This chapter
shows how to write new functions to
extend the capabilities of Processing
beyond its built-in features.
The power of functions is modularity. Functions are independ-
ent software units that are used to build more complex pro-
grams—like LEGO bricks, where each type of brick serves a spe-
cific purpose, and making a complex model requires using the
different parts together. As with functions, the true power of
these bricks is the ability to build many different forms from the
same set of elements. The same group of LEGOs that makes a
spaceship can be reused to construct a truck, a skyscraper, and
many other objects.

Functions are helpful if you want to draw a more complex shape
like a tree over and over. The function to draw the tree shape
would be made up of Processing’s built-in fuctions, like line(),
that create the form. After the code to draw the tree is written,
you don’t need to think about the details of tree drawing again—
you can simply write tree() (or whatever you named the func-
tion) to draw the shape. Functions allow a complex sequence of
statements to be abstracted, so you can focus on the higher-
level goal (such as drawing a tree), and not the details of the
implementation (the line() functions that define the tree

121

shape). Once a function is defined, the code inside the function
need not be repeated again.

Function Basics
A computer runs a program one line at a time. When a function
is run, the computer jumps to where the function is defined and
runs the code there, then jumps back to where it left off.

Example 9-1: Roll the Dice
This behavior is illustrated with the rollDice() function written
for this example. When a program starts, it runs the code in
setup() and then stops. The program takes a detour and runs
the code inside rollDice() each time it appears:

void setup() {
 println("Ready to roll!");
 rollDice(20);
 rollDice(20);
 rollDice(6);
 println("Finished.");
}

void rollDice(int numSides) {
 int d = 1 + int(random(numSides));
 println("Rolling... " + d);
}

The two lines of code in rollDice() select a random number
between 1 and the number of sides on the dice, and prints that
number to the Console. Because the numbers are random,
you’ll see different numbers each time the program is run:

Ready to roll!
Rolling... 20
Rolling... 11
Rolling... 1
Finished.

Each time the rollDice() function is run inside setup(), the
code within the function runs from top to bottom, then the pro-
gram continues on the next line within setup().

The random() function returns a number from 0 up to (but not
including) the number specified. So random(6) returns a number

122 Getting Started with Processing

between 0 and 5.99999. . . Because random() returns a float
value, we also use int() to convert it to an integer. So int(ran
dom(6)) will return 0, 1, 2, 3, 4, or 5. Then we add 1 so that the
number returned is between 1 and 6 (like a die). Like many other
cases in this book, counting from 0 makes it easier to use the
results of random() with other calculations.

Example 9-2: Another Way to Roll
If an equivalent program were written without the rollDice()
function, it might look like this:

void setup() {
 println("Ready to roll!");
 int d1 = 1 + int(random(20));
 println("Rolling... " + d1);
 int d2 = 1 + int(random(20));
 println("Rolling... " + d2);
 int d3 = 1 + int(random(6));
 println("Rolling... " + d3);
 println("Finished.");
}

The rollDice() function in Example 9-1 on page 122 makes the
code easier to read and maintain. The program is clearer,
because the name of the function clearly states its purpose. In
this example, we see the random() function in setup(), but its
use is not as obvious. The number of sides on the die is also
clearer with a function: when the code says rollDice(6), it’s
obvious that it’s simulating the roll of a six-sided die. Also, it’s
easier to maintain Example 9-1 on page 122, because informa-
tion is not repeated. The phase Rolling... is repeated three
times here. If you want to change that text to something else,
you would need to update the program in three places, rather
than making a single edit inside the rollDice() function. In addi-
tion, as you’ll see in Example 9-5 on page 126, a function can
also make a program much shorter (and therefore easier to
maintain and read), which helps reduce the potential number of
bugs.

Functions 123

Make a Function
In this section, we’ll draw an owl to explain the steps involved in
making a function.

Example 9-3: Draw the Owl
First, we’ll draw the owl without using a function:

void setup() {
 size(480, 120);
}

void draw() {
 background(176, 204, 226);
 translate(110, 110);
 stroke(138, 138, 125);
 strokeWeight(70);
 line(0, -35, 0, -65); // Body
 noStroke();
 fill(255);
 ellipse(-17.5, -65, 35, 35); // Left eye dome
 ellipse(17.5, -65, 35, 35); // Right eye dome
 arc(0, -65, 70, 70, 0, PI); // Chin
 fill(51, 51, 30);
 ellipse(-14, -65, 8, 8); // Left eye
 ellipse(14, -65, 8, 8); // Right eye
 quad(0, -58, 4, -51, 0, -44, -4, -51); // Beak
}

Notice that translate() is used to move the origin (0,0) to 110
pixels over and 110 pixels down. Then the owl is drawn relative to
(0,0), with its coordinates sometimes positive and negative as
it’s centered around the new 0,0 point. See Figure 9-1.

124 Getting Started with Processing

Figure 9-1. The owl’s coordinates

Example 9-4: Two’s Company
The code presented in Example 9-3 on page 124 is reasonable if
there is only one owl, but when we draw a second, the length of
the code is nearly doubled:

void setup() {
 size(480, 120);
}

void draw() {
 background(176, 204, 226);

 // Left owl
 translate(110, 110);
 stroke(138, 138, 125);
 strokeWeight(70);
 line(0, -35, 0, -65); // Body
 noStroke();

Functions 125

 fill(255);
 ellipse(-17.5, -65, 35, 35); // Left eye dome
 ellipse(17.5, -65, 35, 35); // Right eye dome
 arc(0, -65, 70, 70, 0, PI); // Chin
 fill(51, 51, 30);
 ellipse(-14, -65, 8, 8); // Left eye
 ellipse(14, -65, 8, 8); // Right eye
 quad(0, -58, 4, -51, 0, -44, -4, -51); // Beak

 // Right owl
 translate(70, 0);
 stroke(138, 138, 125);
 strokeWeight(70);
 line(0, -35, 0, -65); // Body
 noStroke();
 fill(255);
 ellipse(-17.5, -65, 35, 35); // Left eye dome
 ellipse(17.5, -65, 35, 35); // Right eye dome
 arc(0, -65, 70, 70, 0, PI); // Chin
 fill(51, 51, 30);
 ellipse(-14, -65, 8, 8); // Left eye
 ellipse(14, -65, 8, 8); // Right eye
 quad(0, -58, 4, -51, 0, -44, -4, -51); // Beak
}

The program grew from 21 lines to 34: the code to draw the first
owl was cut and pasted into the program and a translate() was
inserted to move it 70 pixels to the right. This is a tedious and
inefficient way to draw a second owl, not to mention the head-
ache of adding a third owl with this method. But duplicating the
code is unnecessary, because this is the type of situation where
a function can come to the rescue.

Example 9-5: An Owl Function
In this example, a function is introduced to draw two owls with
the same code. If we make the code that draws the owl to the
screen into a new function, the code need only appear once in
the program:

126 Getting Started with Processing

void setup() {
 size(480, 120);
}

void draw() {
 background(176, 204, 226);
 owl(110, 110);
 owl(180, 110);
}

void owl(int x, int y) {
 pushMatrix();
 translate(x, y);
 stroke(138, 138, 125);
 strokeWeight(70);
 line(0, -35, 0, -65); // Body
 noStroke();
 fill(255);
 ellipse(-17.5, -65, 35, 35); // Left eye dome
 ellipse(17.5, -65, 35, 35); // Right eye dome
 arc(0, -65, 70, 70, 0, PI); // Chin
 fill(51, 51, 30);
 ellipse(-14, -65, 8, 8); // Left eye
 ellipse(14, -65, 8, 8); // Right eye
 quad(0, -58, 4, -51, 0, -44, -4, -51); // Beak
 popMatrix();
}

You can see from the illustrations that this example and Exam-
ple 9-4 on page 125 have the same result, but this example is
shorter, because the code to draw the owl appears only once,
inside the aptly named owl() function. This code runs twice,
because it’s called twice inside draw(). The owl is drawn in two
different locations because of the parameters passed into the
function that set the x and y coordinates.

Parameters are an important part of functions, because they
provide flexibility. We saw another example in the rollDice()

Functions 127

function; the single parameter named numSides made it possible
to simulate a 6-sided die, a 20-sided die, or a die with any num-
ber of sides. This is just like many other Processing functions.
For instance, the parameters to the line() function make it pos-
sible to draw a line from any pixel on screen to any other pixel.
Without the parameters, the function would be able to draw a
line only from one fixed point to another.

Each parameter has a data type (such as int or float), because
each parameter is a variable that’s created each time the func-
tion runs. When this example is run, the first time the owl func-
tion is called, the value of the x parameter is 110, and y is also
110. In the second use of the function, the value of x is 180 and y
is again 110. Each value is passed into the function and then
wherever the variable name appears within the function, it’s
replaced with the incoming value.

Make sure the values passed into a function match the data
types of the parameters. For instance, if the following appeared
inside the setup() for this example:

owl(110.5, 120.2);

This would create an error, because the data type for the x and y
parameters is int, and the values 110.5 and 120.2 are float val-
ues.

Example 9-6: Increasing the Surplus
Population
Now that we have a basic function to draw the owl at any loca-
tion, we can draw many owls efficiently by placing the function
within a for loop and changing the first parameter each time
through the loop:

128 Getting Started with Processing

void setup() {
 size(480, 120);
}

void draw() {
 background(176, 204, 226);
 for (int x = 35; x < width + 70; x += 70) {
 owl(x, 110);
 }
}

// Insert owl() function from Example 9-5

It’s possible to keep adding more and more parameters to the
function to change different aspects of how the owl is drawn.
Values could be passed in to change the owl’s color, rotation,
scale, or the diameter of its eyes.

Example 9-7: Owls of Different Sizes
In this example, we’ve added two parameters to change the gray
value and size of each owl:

void setup() {
 size(480, 120);
}

void draw() {
 background(176, 204, 226);
 randomSeed(0);
 for (int i = 35; i < width + 40; i += 40) {
 int gray = int(random(0, 102));
 float scalar = random(0.25, 1.0);
 owl(i, 110, gray, scalar);
 }
}

void owl(int x, int y, int g, float s) {

Functions 129

 pushMatrix();
 translate(x, y);
 scale(s); // Set the size
 stroke(138-g, 138-g, 125-g); // Set the color value
 strokeWeight(70);
 line(0, -35, 0, -65); // Body
 noStroke();
 fill(255);
 ellipse(-17.5, -65, 35, 35); // Left eye dome
 ellipse(17.5, -65, 35, 35); // Right eye dome
 arc(0, -65, 70, 70, 0, PI); // Chin
 fill(51, 51, 30);
 ellipse(-14, -65, 8, 8); // Left eye
 ellipse(14, -65, 8, 8); // Right eye
 quad(0, -58, 4, -51, 0, -44, -4, -51); // Beak
 popMatrix();
}

Return Values
Functions can make a calculation and then return a value to the
main program. We’ve already used functions of this type, includ-
ing random() and sin(). Notice that when this type of function
appears, the return value is usually assigned to a variable:

float r = random(1, 10);

In this case, random() returns a value between 1 and 10, which is
then assigned to the r variable.

A function that returns a value is also frequently used as a
parameter to another function. For instance:

point(random(width), random(height));

In this case, the values from random() aren’t assigned to a vari-
able—they are passed as parameters to point() and used to
position the point within the window.

Example 9-8: Return a Value
To make a function that returns a value, replace the keyword
void with the data type that you want the function to return. In
your function, specify the data to be passed back with the key-
word return. For instance, this example includes a function

130 Getting Started with Processing

called calculateMars() that calculates the weight of a person or
object on our neighboring planet:

void setup() {
 float yourWeight = 132;
 float marsWeight = calculateMars(yourWeight);
 println(marsWeight);
}

float calculateMars(float w) {
 float newWeight = w * 0.38;
 return newWeight;
}

Notice the data type float before the function name to show
that it returns a floating-point value, and the last line of the
block, which returns the variable newWeight. In the second line of
setup(), that value is assigned to the variable marsWeight. (To
see your own weight on Mars, change the value of the your
Weight variable to your weight.)

Robot 7: Functions

In contrast to Robot 2 (see “Robot 2: Variables” on page 47),
this example uses a function to draw four robot variations within
the same program. Because the drawRobot() function appears

Functions 131

four times within draw(), the code within the drawRobot() block
is run four times, each time with a different set of parameters to
change the position and height of the robot’s body.

Notice how what were global variables in Robot 2 have now been
isolated within the drawRobot() function. Because these vari-
ables apply only to drawing the robot, they belong inside the
curly braces that define the drawRobot() function block.
Because the value of the radius variable doesn’t change, it need
not be a parameter. Instead, it is defined at the beginning of
drawRobot():

void setup() {
 size(720, 480);
 strokeWeight(2);
 ellipseMode(RADIUS);
}

void draw() {
 background(0, 153, 204);
 drawRobot(120, 420, 110, 140);
 drawRobot(270, 460, 260, 95);
 drawRobot(420, 310, 80, 10);
 drawRobot(570, 390, 180, 40);
}

void drawRobot(int x, int y, int bodyHeight, int neckHeight) {

 int radius = 45;
 int ny = y - bodyHeight - neckHeight - radius; // Neck y

 // Neck
 stroke(255);
 line(x+2, y-bodyHeight, x+2, ny);
 line(x+12, y-bodyHeight, x+12, ny);
 line(x+22, y-bodyHeight, x+22, ny);

 // Antennae
 line(x+12, ny, x-18, ny-43);
 line(x+12, ny, x+42, ny-99);
 line(x+12, ny, x+78, ny+15);

 // Body
 noStroke();
 fill(255, 204, 0);

132 Getting Started with Processing

 ellipse(x, y-33, 33, 33);
 fill(0);
 rect(x-45, y-bodyHeight, 90, bodyHeight-33);
 fill(255, 204, 0);
 rect(x-45, y-bodyHeight+17, 90, 6);

 // Head
 fill(0);
 ellipse(x+12, ny, radius, radius);
 fill(255);
 ellipse(x+24, ny-6, 14, 14);
 fill(0);
 ellipse(x+24, ny-6, 3, 3);
 fill(153, 204, 255);
 ellipse(x, ny-8, 5, 5);
 ellipse(x+30, ny-26, 4, 4);
 ellipse(x+41, ny+6, 3, 3);
}

Functions 133

10/Objects

Object-oriented programming (OOP) is a
different way to think about your pro-
grams. Although the term “object-
oriented programming” may sound
intimidating, there’s good news: you’ve
been working with objects since Chap-
ter 7, when you started using PImage,
PFont, String, and PShape. Unlike the
primitive data types boolean, int, and
float, which can store only one value, an
object can store many. But that’s only a
part of the story. Objects are also a way
to group variables with related functions.
Because you already know how to work
with variables and functions, objects sim-
ply combine what you’ve already learned
into a more understandable package.
Objects are important, because they break up ideas into smaller
building blocks. This mirrors the natural world where, for
instance, organs are made of tissue, tissue is made of cells, and
so on. Similarly, as your code becomes more complicated, you
must think in terms of smaller structures that form more com-
plicated ones. It’s easier to write and maintain smaller, under-
standable pieces of code that work together than it is to write
one large piece of code that does everything at once.

135

Fields and Methods
A software object is a collection of related variables and func-
tions. In the context of objects, a variable is called a field (or
instance variable) and a function is called a method. Fields and
methods work just like the variables and functions covered in
earlier chapters, but we’ll use the new terms to emphasize that
they are a part of an object. To say it another way, an object
combines related data (fields) with related actions and behav-
iors (methods). The idea is to group together related data with
related methods that act on that data.

For instance, to model a radio, think about what parameters can
be adjusted and the actions that can affect those parameters:

Fields
volume, frequency, band(FM, AM), power(on, off)

Methods
setVolume, setFrequency, setBand

Modeling a simple mechanical device is easy compared to mod-
eling an organism like an ant or a person. It’s not possible to
reduce such complex organisms to a few fields and methods,
but it is possible to model enough to create an interesting simu-
lation. The Sims video game is a clear example. This game is
played by managing the daily activities of simulated people. The
characters have enough personality to make a playable, addic-
tive game, but no more. In fact, they have only five personality
attributes: neat, outgoing, active, playful, and nice. With the
knowledge that it’s possible to make a highly simplified model of
complex organisms, we could start programming an ant with
only a few fields and methods:

Fields
type(worker, soldier), weight, length

Methods
walk, pinch, releasePheromones, eat

If you made a list of an ant’s fields and methods, you might
choose to focus on different aspects of the ant to model.
There’s no right way to make a model, as long as you make it
appropriate for the purpose of your program’s goals.

136 Getting Started with Processing

Define a Class
Before you can create an object, you must define a class. A
class is the specification for an object. Using an architectural
analogy, a class is like a blueprint for a house, and the object is
like the house itself. Each house made from the blueprint can
have variations, and the blueprint is only the specification, not a
built structure. For example, one house can be blue and the
other red; one house might come with a fireplace and the other
without. Likewise with objects, the class defines the data types
and behaviors, but each object (house) made from a single
class (blueprint) has variables (color, fireplace) that are set to
different values. To use a more technical term, each object is an
instance of a class and each instance has its own set of fields
and methods.

Before you write a class, we recommend a little planning. Think
about what fields and methods your class should have. Do a lit-
tle brainstorming to imagine all the possible options and then
prioritize and make your best guess about what will work. You’ll
make changes during the programming process, but it’s impor-
tant to have a good start.

For your fields, select clear names and decide the data type for
each. The fields inside a class can be any type of data. A class
can simultaneously hold many images, boolean, float,
and String values, and so on. Keep in mind that one reason to
make a class is to group together related data elements. For
your methods, select clear names and decide the return values
(if any). The methods are used to change the values of the fields
and to perform actions based on the fields’ values.

For our first class, we’ll convert Example 8-9 on page 110 from
earlier in the book. We start by making a list of the fields from
the example:

float x
float y
int diameter
float speed

The next step is to figure out what methods might be useful for
the class. In looking at the draw() function from the example

Objects 137

we’re adapting, we see two primary components. The position
of the shape is updated and drawn to the screen. Let’s create
two methods for our class, one for each task:

void move()
void display()

Neither of these methods return a value, so they both have the
return type void. When we next write the class based on the
lists of fields and methods, we’ll follow four steps:

1. Create the block.

2. Add the fields.

3. Write a constructor (explained shortly) to assign values to
the fields.

4. Add the methods.

First, we create a block:

class JitterBug {

}

Notice that the keyword class is lowercase and the name Jitter
Bug is uppercase. Naming the class with an uppercase letter
isn’t required, but it is a convention (that we strongly encour-
age) used to denote that it’s a class. (The keyword class, how-
ever, must be lowercase because it’s a rule of the programming
language.)

Second, we add the fields. When we do this, we have to decide
which fields will have their values assigned through a construc-
tor, a special method used for that purpose. As a rule of thumb,
field values that you want to be different for each object are
passed in through the constructor, and the other field values
can be defined when they are declared. For the JitterBug class,
we’ve decided that the values for x, y, and diameter will be
passed in. So the fields are declared as follows:

class JitterBug {
 float x;
 float y;
 int diameter;

138 Getting Started with Processing

 float speed = 0.5;
}

Third, we add the constructor. The constructor always has the
same name as the class. The purpose of the constructor is to
assign the initial values to the fields when an object (an instance
of the class) is created (Figure 10-1). The code inside the con-
structor block is run once when the object is first created. As
discussed earlier, we’re passing in three parameters to the con-
structor when the object is initialized. Each of the values passed
in is assigned to a temporary variable that exists only while the
code inside the constructor is run. To clarify this, we’ve added
the name temp to each of these variables, but they can be
named with any terms that you prefer. They are used only to
assign the values to the fields that are a part of the class. Also
note that the constructor never returns a value and therefore
doesn’t have void or another data type before it. After adding
the constructor, the class looks like this:

class JitterBug {

 float x;
 float y;
 int diameter;
 float speed = 0.5;

 JitterBug(float tempX, float tempY, int tempDiameter) {
 x = tempX;
 y = tempY;
 diameter = tempDiameter;
 }

}

The last step is to add the methods. This part is straightforward;
it’s just like writing functions, but here they are contained within
the class. Also, note the code spacing. Every line within the
class is indented a few spaces to show that it’s inside the block.
Within the constructor and the methods, the code is spaced
again to clearly show the hierarchy:

class JitterBug {

 float x;
 float y;

Objects 139

 int diameter;
 float speed = 2.5;

 JitterBug(float tempX, float tempY, int tempDiameter) {
 x = tempX;
 y = tempY;
 diameter = tempDiameter;
 }

 void move() {
 x += random(-speed, speed);
 y += random(-speed, speed);
 }

 void display() {
 ellipse(x, y, diameter, diameter);
 }

}

140 Getting Started with Processing

Figure 10-1. Passing values into the constructor to set the val-
ues for an object’s fields

Objects 141

Create Objects
Now that you have defined a class, to use it in a program you
must define an object from that class. There are two steps to
create an object:

1. Declare the object variable.

2. Create (initialize) the object with the keyword new.

Example 10-1: Make an Object
To make your first object, we’ll start by showing how this works
within a Processing sketch and then continue by explaining each
part in depth:

JitterBug bug; // Declare object

void setup() {
 size(480, 120);
 // Create object and pass in parameters
 bug = new JitterBug(width/2, height/2, 20);
}

void draw() {
 bug.move();
 bug.display();
}

class JitterBug {

 float x;
 float y;
 int diameter;
 float speed = 2.5;

 JitterBug(float tempX, float tempY, int tempDiameter) {

142 Getting Started with Processing

 x = tempX;
 y = tempY;
 diameter = tempDiameter;
 }

 void move() {
 x += random(-speed, speed);
 y += random(-speed, speed);
 }

 void display() {
 ellipse(x, y, diameter, diameter);
 }

}

Each class is a data type and each object is a variable. We
declare object variables in a similar way to variables from primi-
tive data types like boolean, int, and float. The object is
declared by stating the data type followed by a name for the
variable:

JitterBug bug;

The second step is to initialize the object with the keyword new.
It makes space for the object in memory and creates the fields.
The name of the constructor is written to the right of the new
keyword, followed by the parameters into the constructor, if any:

JitterBug bug = new JitterBug(200.0, 250.0, 30);

The three numbers within the parentheses are the parameters
that are passed into the JitterBug class constructor. The num-
ber of these parameters and their data types must match those
of the constructor.

Example 10-2: Make Multiple Objects
In Example 10-1 on page 142, we see something else new: the
period (dot) that’s used to access the object’s methods inside of
draw(). The dot operator is used to join the name of the object
with its fields and methods. This becomes clearer in this exam-
ple, where two objects are made from the same class. The
jit.move() function refers to the move() method that belongs to

Objects 143

the object named jit, and bug.move() refers to the move()
method that belongs to the object named bug:

JitterBug jit;
JitterBug bug;

void setup() {
 size(480, 120);
 jit = new JitterBug(width * 0.33, height/2, 50);
 bug = new JitterBug(width * 0.66, height/2, 10);
}

void draw() {
 jit.move();
 jit.display();
 bug.move();
 bug.display();
}

class JitterBug {

 float x;
 float y;
 int diameter;
 float speed = 2.5;

 JitterBug(float tempX, float tempY, int tempDiameter) {
 x = tempX;
 y = tempY;
 diameter = tempDiameter;
 }

 void move() {
 x += random(-speed, speed);
 y += random(-speed, speed);
 }

 void display() {

144 Getting Started with Processing

 ellipse(x, y, diameter, diameter);
 }

}

Tabs
Now that the class exists as its own module of code, any
changes will modify the objects made from it. For instance, you
could add a field to the JitterBug class that controls the color,
or another that determines its size. These values can be passed
in using the constructor or assigned using additional methods,
such as setColor() or setSize(). And because it’s a self-
contained unit, you can also use the JitterBug class in another
sketch.

Now is a good time to learn about the tab feature of the Pro-
cessing Development Environment (Figure 10-2). Tabs allow you
to spread your code across more than one file. This makes
longer code easier to edit and more manageable in general. A
new tab is usually created for each class, which reinforces the
modularity of working with classes and makes the code easy to
find.

To create a new tab, click the arrow at the righthand side of the
tab bar. When you select New Tab from the menu, you will be
prompted to name the tab within the message window. Using
this technique, modify this example’s code to try to make a new
tab for the JitterBug class.

Each tab shows up as a separate .pde file within the
sketch’s folder.

Objects 145

Figure 10-2. Code can be split into different tabs to make it eas-
ier to manage

146 Getting Started with Processing

Robot 8: Objects

A software object combines methods (functions) and fields
(variables) into one unit. The Robot class in this example defines
all of the robot objects that will be created from it. Each Robot
object has its own set of fields to store a position and the illus-
tration that will draw to the screen. Each has methods to update
the position and display the illustration.

The parameters for bot1 and bot2 in setup() define the x and y
coordinates and the .svg file that will be used to depict the
robot. The tempX and tempY parameters are passed into the con-
structor and assigned to the xpos and ypos fields. The svgName
parameter is used to load the related illustration. The objects
(bot1 and bot2) draw at their own location and with a different
illustration because they each have unique values passed into
the objects through their constructors:

Robot bot1;
Robot bot2;

void setup() {
 size(720, 480);
 bot1 = new Robot("robot1.svg", 90, 80);
 bot2 = new Robot("robot2.svg", 440, 30);

Objects 147

}

void draw() {
 background(0, 153, 204);

 // Update and display first robot
 bot1.update();
 bot1.display();

 // Update and display second robot
 bot2.update();
 bot2.display();
}

class Robot {
 float xpos;
 float ypos;
 float angle;
 PShape botShape;
 float yoffset = 0.0;

 // Set initial values in constructor
 Robot(String svgName, float tempX, float tempY) {
 botShape = loadShape(svgName);
 xpos = tempX;
 ypos = tempY;
 angle = random(0, TWO_PI);
 }

 // Update the fields
 void update() {
 angle += 0.05;
 yoffset = sin(angle) * 20;
 }

 // Draw the robot to the screen
 void display() {
 shape(botShape, xpos, ypos + yoffset);
 }
}

148 Getting Started with Processing

11/Arrays

An array is a list of variables that share a
common name. Arrays are useful
because they make it possible to work
with more variables without creating a
new name for each. This makes the code
shorter, easier to read, and more conve-
nient to update.

From Variables to Arrays
When a program needs to keep track of one or two things, it’s
not necessary to use an array. In fact, adding an array might
make the program more complicated than necessary. How-
ever, when a program has many elements (for example, a field
of stars in a space game or multiple data points in a visualiza-
tion), arrays make the code easier to write.

Example 11-1: Many Variables
To see what we mean, refer to Example 8-3 on page 104. This
code works fine if we’re moving around only one shape, but
what if we want to have two? We need to make a new x variable
and update it within draw():

149

float x1 = -20;
float x2 = 20;

void setup() {
 size(240, 120);
 noStroke();
}

void draw() {
 background(0);
 x1 += 0.5;
 x2 += 0.5;
 arc(x1, 30, 40, 40, 0.52, 5.76);
 arc(x2, 90, 40, 40, 0.52, 5.76);
}

Example 11-2: Too Many Variables
The code for the previous example is still manageable, but what
if we want to have five circles? We need to add three more vari-
ables to the two we already have:

float x1 = -10;
float x2 = 10;
float x3 = 35;
float x4 = 18;
float x5 = 30;

void setup() {
 size(240, 120);
 noStroke();
}

void draw() {
 background(0);
 x1 += 0.5;
 x2 += 0.5;
 x3 += 0.5;

150 Getting Started with Processing

 x4 += 0.5;
 x5 += 0.5;
 arc(x1, 20, 20, 20, 0.52, 5.76);
 arc(x2, 40, 20, 20, 0.52, 5.76);
 arc(x3, 60, 20, 20, 0.52, 5.76);
 arc(x4, 80, 20, 20, 0.52, 5.76);
 arc(x5, 100, 20, 20, 0.52, 5.76);
}

This code is starting to get out of control.

Example 11-3: Arrays, Not Variables
Imagine what would happen if you wanted to have 3,000 circles.
This would mean creating 3,000 individual variables, then
updating each one separately. Could you keep track of that
many variables? Would you want to? Instead, we use an array:

float[] x = new float[3000];

void setup() {
 size(240, 120);
 noStroke();
 fill(255, 200);
 for (int i = 0; i < x.length; i++) {
 x[i] = random(-1000, 200);
 }
}

void draw() {
 background(0);
 for (int i = 0; i < x.length; i++) {
 x[i] += 0.5;
 float y = i * 0.4;
 arc(x[i], y, 12, 12, 0.52, 5.76);
 }
}

Arrays 151

We’ll spend the rest of this chapter talking about the details that
make this example possible.

Make an Array
Each item in an array is called an element, and each has an
index value to mark its position within the array. Just like coordi-
nates on the screen, index values for an array start counting
from 0. For instance, the first element in the array has the index
value 0, the second element in the array has the index value 1,
and so on. If there are 20 values in the array, the index value of
the last element is 19. Figure 11-1 shows the conceptual struc-
ture of an array.

Figure 11-1. An array is a list of one or more variables that share
the same name

Using arrays is similar to working with single variables; it follows
the same patterns. As you know, you can make a single integer
variable called x with this code:

int x;

To make an array, just place brackets after the data type:

int[] x;

The beauty of creating an array is the ability to make 2, 10, or
100,000 variable values with only one line of code. For instance,
the following line creates an array of 2,000 integer variables:

int[] x = new int[2000];

You can make arrays from all Processing data types: boolean,
float, String, PShape, and so on, as well as any user-defined
class. For example, the following code creates an array of 32
PImage variables:

152 Getting Started with Processing

PImage[] images = new PImage[32];

To make an array, start with the name of the data type, followed
by the brackets. The name you select for the array is next, fol-
lowed by the assignment operator (the equal symbol), followed
by the new keyword, followed by the name of the data type again,
with the number of elements to create within the brackets. This
pattern works for arrays of all data types.

Each array can store only one type of data (boolean,
int, float, PImage, etc.). You can’t mix and match dif-
ferent types of data within a single array. If you need
to do this, work with objects instead.

Before we get ahead of ourselves, let’s slow down and talk about
working with arrays in more detail. Like making an object, there
are three steps to working with an array:

1. Declare the array and define the data type.

2. Create the array with the keyword new and define the length.

3. Assign values to each element.

Each step can happen on its own line, or all the steps can be
compressed together. Each of the three following examples
shows a different technique to create an array called x that
stores two integers, 12 and 2. Pay close attention to what hap-
pens before setup() and what happens within setup().

Example 11-4: Declare and Assign an
Array
First, we’ll declare the array outside of setup() and then create
and assign the values within. The syntax x[0] refers to the first
element in the array and x[1] is the second:

int[] x; // Declare the array

void setup() {
 size(200, 200);
 x = new int[2]; // Create the array

Arrays 153

 x[0] = 12; // Assign the first value
 x[1] = 2; // Assign the second value
}

Example 11-5: Compact Array
Assignment
Here’s a slightly more compact example, in which the array is
both declared and created on the same line, then the values are
assigned within setup():

int[] x = new int[2]; // Declare and create the array

void setup() {
 size(200, 200);
 x[0] = 12; // Assign the first value
 x[1] = 2; // Assign the second value
}

Example 11-6: Assigning to an Array
in One Go
You can also assign values to the array when it’s created, if it’s
all part of a single statement:

int[] x = { 12, 2 }; // Declare, create, and assign

void setup() {
 size(200, 200);
}

Avoid creating arrays within draw(), because creat-
ing a new array on every frame will slow down your
frame rate.

Example 11-7: Revisiting the First
Example
As a complete example of how to use arrays, we’ve recoded
Example 11-1 on page 149 here. Although we don’t yet see the
full benefits revealed in Example 11-3 on page 151, we do see
some important details of how arrays work:

154 Getting Started with Processing

float[] x = {-20, 20};

void setup() {
 size(240, 120);
 noStroke();
}

void draw() {
 background(0);
 x[0] += 0.5; // Increase the first element
 x[1] += 0.5; // Increase the second element
 arc(x[0], 30, 40, 40, 0.52, 5.76);
 arc(x[1], 90, 40, 40, 0.52, 5.76);
}

Repetition and Arrays
The for loop, introduced in “Repetition” on page 40, makes it
easier to work with large arrays while keeping the code concise.
The idea is to write a loop to move through each element of the
array one by one. To do this, you need to know the length of the
array. The length field associated with each array stores the
number of elements. We use the name of the array with the dot
operator (a period) to access this value. For instance:

int[] x = new int[2]; // Declare and create the array
println(x.length); // Prints 2 to the Console

int[] y = new int[1972]; // Declare and create the array
println(y.length); // Prints 1972 to the Console

Example 11-8: Filling an Array in a
for Loop
A for loop can be used to fill an array with values, or to read the
values back out. In this example, the array is first filled with ran-
dom numbers inside setup(), and then these numbers are used
to set the stroke value inside draw(). Each time the program is
run, a new set of random numbers is put into the array:

Arrays 155

float[] gray;

void setup() {
 size(240, 120);
 gray = new float[width];
 for (int i = 0; i < gray.length; i++) {
 gray[i] = random(0, 255);
 }
}

void draw() {
 for (int i = 0; i < gray.length; i++) {
 stroke(gray[i]);
 line(i, 0, i, height);
 }
}

Example 11-9: Track Mouse
Movements
In this example, there are two arrays to store the position of the
mouse—one for the x coordinate and one for the y coordinate.
These arrays store the location of the mouse for the previous 60
frames. With each new frame, the oldest x and y coordinate val-
ues are removed and replaced with the current mouseX and
mouseY values. The new values are added to the first position of
the array, but before this happens, each value in the array is
moved one position to the right (from back to front) to make
room for the new numbers. This example visualizes this action.
Also, at each frame, all 60 coordinates are used to draw a series
of ellipses to the screen:

156 Getting Started with Processing

int num = 60;
int[] x = new int[num];
int[] y = new int[num];

void setup() {
 size(240, 120);
 noStroke();
}

void draw() {
 background(0);
 // Copy array values from back to front
 for (int i = x.length-1; i > 0; i--) {
 x[i] = x[i-1];
 y[i] = y[i-1];
 }
 x[0] = mouseX; // Set the first element
 y[0] = mouseY; // Set the first element
 for (int i = 0; i < x.length; i++) {
 fill(i * 4);
 ellipse(x[i], y[i], 40, 40);
 }
}

The technique for storing a shifting buffer of num-
bers in an array shown in this example and
Figure 11-2 is less efficient than an alternative techni-
que that uses the % (modulo) operator. This is
explained in the Examples → Basics → Input →
StoringInput example included with Processing.

Arrays 157

Figure 11-2. Shifting the values in an array one place to the right

Arrays of Objects
The two short examples in this section bring together every
major programming concept in this book: variables, iteration,
conditionals, functions, objects, and arrays. Making an array of
objects is nearly the same as making the arrays we introduced
on the previous pages, but there’s one additional consideration:
because each array element is an object, it must first be created
with the keyword new (like any other object) before it is assigned
to the array. With a custom-defined class such as JitterBug
(see Chapter 10), this means using new to set up each element
before it’s assigned to the array. Or, for a built-in Processing

158 Getting Started with Processing

class such as PImage, it means using the loadImage() function
to create the object before it’s assigned.

Example 11-10: Managing Many
Objects
This example creates an array of 33 JitterBug objects and then
updates and displays each one inside draw(). For this example
to work, you need to add the JitterBug class to the code:

JitterBug[] bugs = new JitterBug[33];

void setup() {
 size(240, 120);
 for (int i = 0; i < bugs.length; i++) {
 float x = random(width);
 float y = random(height);
 int r = i + 2;
 bugs[i] = new JitterBug(x, y, r);
 }
}

void draw() {
 for (int i = 0; i < bugs.length; i++) {
 bugs[i].move();
 bugs[i].display();
 }
}

// Insert JitterBug class from Example 10-1

Example 11-11: A New Way to
Manage Objects
When working with arrays of objects, there’s a different kind of
loop to use called an “enhanced” for loop. Instead of creating a

Arrays 159

new counter variable, such as the i variable in Example 11-10 on
page 159, it’s possible to iterate over the elements of an array or
list directly. In the following example, each object in the bugs
array of JitterBug objects is assigned to b in order to run the
move() and display() methods for all objects in the array.

The enhanced for loop is often tidier than looping with a num-
ber, although in this example, we didn’t use it inside setup()
because i was needed in two places inside the loop, demon-
strating how sometimes it’s helpful to have the number around:

JitterBug[] bugs = new JitterBug[33];

void setup() {
 size(240, 120);
 for (int i = 0; i < bugs.length; i++) {
 float x = random(width);
 float y = random(height);
 int r = i + 2;
 bugs[i] = new JitterBug(x, y, r);
 }
}

void draw() {
 for (JitterBug b : bugs) {
 b.move();
 b.display();
 }
}

// Insert JitterBug class from Example 10-1

The final array example loads a sequence of images and stores
each as an element within an array of PImage objects.

Example 11-12: Sequences of Images
To run this example, get the images from the media.zip file as
described in Chapter 7. The images are named sequentially
(frame-0000.png, frame-0001.png, and so forth), which makes
it possible to create the name of each file within a for loop, as
seen in the eighth line of the program:

160 Getting Started with Processing

int numFrames = 12; // The number of frames
PImage[] images = new PImage[numFrames]; // Make the array
int currentFrame = 0;

void setup() {
 size(240, 120);
 for (int i = 0; i < images.length; i++) {
 String imageName = "frame-" + nf(i, 4) + ".png";
 images[i] = loadImage(imageName); // Load each image
 }
 frameRate(24);
}

void draw() {
 image(images[currentFrame], 0, 0);
 currentFrame++; // Next frame
 if (currentFrame >= images.length) {
 currentFrame = 0; // Return to first frame
 }
}

The nf() function formats numbers so that nf(1, 4) returns the
string “0001” and nf(11, 4) returns “0011”. These values are
concatenated with the beginning of the filename (frame-) and
the end (.png) to create the complete filename as a String vari-
able. The files are loaded into the array on the following line. The
images are displayed to the screen one at a time in draw().
When the last image in the array is displayed, the program
returns to the beginning of the array and shows the images
again in sequence.

Arrays 161

Robot 9: Arrays

Arrays make it easier for a program to work with many ele-
ments. In this example, an array of Robot objects is declared at
the top. The array is then allocated inside setup(), and each
Robot object is created inside the for loop. In draw(), another
for loop is used to update and display each element of the bots
array.

The for loop and an array make a powerful combination. Notice
the subtle differences between the code for this example and
Robot 8 (see “Robot 8: Objects” on page 147) in contrast to the
extreme changes in the visual result. Once an array is created
and a for loop is put in place, it’s as easy to work with 3 ele-
ments as it is 3,000.

The decision to load the SVG file within setup() rather than in
the Robot class is the major change from Robot 8. This choice
was made so the file is loaded only once, rather than as many
times as there are elements in the array (in this case, 20 times).
This change makes the code start faster because loading a file
takes time, and it uses less memory because the file is stored
once. Each element of the bot array references the same file:

162 Getting Started with Processing

Robot[] bots; // Declare array of Robot objects

void setup() {
 size(720, 480);
 PShape robotShape = loadShape("robot2.svg");
 // Create the array of Robot objects
 bots = new Robot[20];
 // Create each object
 for (int i = 0; i < bots.length; i++) {
 // Create a random x coordinate
 float x = random(-40, width-40);
 // Assign the y coordinate based on the order
 float y = map(i, 0, bots.length, -100, height-200);
 bots[i] = new Robot(robotShape, x, y);
 }
}

void draw() {
 background(0, 153, 204);
 // Update and display each bot in the array
 for (int i = 0; i < bots.length; i++) {
 bots[i].update();
 bots[i].display();
 }
}

class Robot {
 float xpos;
 float ypos;
 float angle;
 PShape botShape;
 float yoffset = 0.0;

 // Set initial values in constructor
 Robot(PShape shape, float tempX, float tempY) {
 botShape = shape;
 xpos = tempX;
 ypos = tempY;
 angle = random(0, TWO_PI);
 }

 // Update the fields
 void update() {
 angle += 0.05;
 yoffset = sin(angle) * 20;
 }

Arrays 163

 // Draw the robot to the screen
 void display() {
 shape(botShape, xpos, ypos + yoffset);
 }
}

164 Getting Started with Processing

12/Data

Data visualization is one of the most
active areas at the intersection of code
and graphics and is also among the most
popular uses of Processing. This chapter
builds on what’s already been discussed
about storing and loading data earlier in
the book and introduces more features
relevant to data sets that can be used for
visualization.
There’s a wide range of software that can output standard visu-
alizations like bar charts and scatter plots. However, writing
code to create these visualizations from scratch provides more
control over the output and encourages users to imagine,
explore, and create more unique representations of data. For us,
this is the point of learning to code using software like Process-
ing, and we find it far more interesting than being limited by the
prepackaged methods or tools that are available.

Data Summary
It’s a good time to rewind and discuss how data was introduced
throughout this book. A variable in a Processing sketch is used
to store a piece of data. We started with primitives. In this case,
the word primitive means a single piece of data. For instance, an
int stores one whole number and cannot store more than one.
The idea of data types is essential. Each kind of data is unique
and is stored in a different way. Floating-point numbers (num-
bers with decimals), integers (no decimals), and alphanumeric
symbols (letters and numbers) all have different types of data to
store that kind of information like float, int, and char.

165

An array is created to store a list of elements within a single vari-
able name. For instance, Example 11-8 on page 155 stores hun-
dreds of floating-point numbers that are used to set the stroke
value of lines. Arrays can be created from any primitive data
type, but they are restricted to storing a single type of data. The
way to store more than one data type within a single data struc-
ture is to create a class.

The String, PImage, PFont, and PShape classes store more than
one data element and each is unique. For instance, a String can
store more than one character, a word, sentence, paragraph, or
more. In addition, it has methods to get the length of the data or
return upper- or lowercase versions of it. As another example, a
PImage has an array called pixels and variables that store the
width and the height of the image.

Objects created from the String, PImage, and PShape classes can
be defined within the code, but they can also be loaded from a
file within a sketch’s data folder. The examples in this chapter
will also load data into sketches, but they utilize new classes
that store data in different ways.

The Table class is introduced for storing data in a table of rows
and columns. The JSONObject and JSONArray classes are intro-
duced to store data loaded in through files that use the JSON
format. The file formats for Table, JSONObject, and JSONArray are
discussed in more detail in the following section.

The XML data format is another native data format for Process-
ing and it’s documented in the Processing Reference, but it’s not
covered in this text.

Tables
Many data sets are stored as rows and columns, so Processing
includes a Table class to make it easier to work with tables. If
you have worked with spreadsheets, you have a head start in
working with tables in code. Processing can read a table from a
file, or create a new one directly in code. It’s also possible to
read and write to any row or column and modify individual cells
within the table. In this chapter, we will focus on working with
table data.

166 Getting Started with Processing

Figure 12-1. Tables are grids of cells. Rows are the horizontal
elements and columns are vertical. Data can be read from indi-
vidual cells, rows, and columns.

Table data is often stored in plain-text files with columns using
commas or the tab character. A comma-separated values file is
abbreviated as CSV and uses the file extension .csv. When tabs
are used, the extension .tsv is sometimes used.

To load a CSV or TSV file, first place it into a sketch’s data folder
as described at the beginning of Chapter 7, and then use the
loadTable() function to get the data and place it into an object
made from the Table class.

Only the first few lines of each data set are shown in
the following examples. If you’re manually typing the
code, you’ll need the entire .csv, .json, or .tsv file to
replicate the visualizations shown in the figures. You
can get them from an example sketch’s data folder
(see “Examples and Reference” on page 11).

The data for the next example is a simplified version of Boston
Red Sox player David Ortiz’s batting statistics from 1997 to
2014. From left to right, it lists the year, number of home runs,
runs batted in (RBIs), and batting average. When opened in a
text editor, the first five lines of the file looks like this:

1997,1,6,0.327
1998,9,46,0.277
1999,0,0,0

Data 167

2000,10,63,0.282
2001,18,48,0.234

Example 12-1: Read the Table
In order to load this data into Processing, an object from
the Table class is created. The object in this example is called
stats. The loadTable() function loads the ortiz.csv file from the
data folder in the sketchbook. From there, the for loop reads
through each table row in sequence. It gets the data from the
table and saves it into int and float variables. The getRow
Count() method is used to count the number of rows in the data
file. Because this data is Ortiz’s statistics from 1997 to 2014,
there are 18 rows of data to read:

Table stats;

void setup() {
 stats = loadTable("ortiz.csv");
 for (int i = 0; i < stats.getRowCount(); i++) {
 // Gets an integer from row i, column 0 in the file
 int year = stats.getInt(i, 0);
 // Gets the integer from row i, column 1
 int homeRuns = stats.getInt(i, 1);
 int rbi = stats.getInt(i, 2);
 // Read a number that includes decimal points
 float average = stats.getFloat(i, 3);
 println(year, homeRuns, rbi, average);
 }
}

Inside the for loop, the getInt() and getFloat() methods are
used to grab the data from the table. It’s important to use the
getInt() method to read integer data and likewise to use get
Float() for floating-point variables. Both of these methods have
two parameters, the first is the row to read from and the second
is the column.

Example 12-2: Draw the Table
The next example builds on the last. It creates an array called
homeRuns to store data after it is loaded inside setup() and the
data from that array is used within draw(). The length of

168 Getting Started with Processing

homeRuns is used three times with the code homeRuns.length, to
count the number of for loop iterations.

homeRuns is used first in setup() to define how many times to get
an integer from the table data. Second, it is used to place a ver-
tical mark on the graph for each data item in the array. Third, it
is used to read each element of the array one by one and to stop
reading from the array at the end. After the data is loaded inside
setup() and read into the array, the rest of this program applies
what was learned in Chapter 11.

This example is the visualization of a simplified version of Bos-
ton Red Sox player David Ortiz’s batting statistics from 1997 to
2014 drawn from a table:

int[] homeRuns;

void setup() {
 size(480, 120);
 Table stats = loadTable("ortiz.csv");
 int rowCount = stats.getRowCount();
 homeRuns = new int[rowCount];
 for (int i = 0; i < homeRuns.length; i++) {
 homeRuns[i] = stats.getInt(i, 1);
 }
}

void draw() {
 background(204);
 // Draw background grid for data
 stroke(255);
 line(20, 100, 20, 20);
 line(20, 100, 460, 100);
 for (int i = 0; i < homeRuns.length; i++) {
 float x = map(i, 0, homeRuns.length-1, 20, 460);
 line(x, 20, x, 100);
 }
 // Draw lines based on home run data

Data 169

 noFill();
 stroke(204, 51, 0);
 beginShape();
 for (int i = 0; i < homeRuns.length; i++) {
 float x = map(i, 0, homeRuns.length-1, 20, 460);
 float y = map(homeRuns[i], 0, 60, 100, 20);
 vertex(x, y);
 }
 endShape();
}

This example is so minimal that it’s not necessary to store this
data in arrays, but the idea can be applied to more complex
examples you might want to make in the future. In addition, you
can see how this example could be enhanced with more infor-
mation—for instance, information on the vertical axis to state
the number of home runs and on the horizontal to define the
year.

Example 12-3: 29,740 Cities
To get a better idea about the potential of working with data
tables, the next example uses a larger data set and introduces a
convenient feature. This table data is different because the first
row, the first line in the file, is a header. The header defines a
label for each column to clarify the context. This is the first five
lines of our new data file called cities.csv:

zip,state,city,lat,lng
35004,AL,Acmar,33.584132,-86.51557
35005,AL,Adamsville,33.588437,-86.959727
35006,AL,Adger,33.434277,-87.167455
35007,AL,Keystone,33.236868,-86.812861

The header makes it easier to read the code—for example, the
second line of the file states the zip code of Acmar, Alabama, is
35004 and defines the latitude of the city as 33.584132 and the
longitude as -86.51557. In total, the file is 29,741 lines long and it
defines the location and zip codes of 29,740 cities in the United
States.

The next example loads this data within setup() and then draws
it to the screen in a for loop within draw(). The setXY() function
converts the latitude and longitude data from the file into a
point on the screen:

170 Getting Started with Processing

Table cities;

void setup() {
 size(240, 120);
 cities = loadTable("cities.csv", "header");
 stroke(255);
}

void draw() {
 background(0, 26, 51);
 float xoffset = map(mouseX, 0, width, -width*3, -width);
 translate(xoffset, -300);
 scale(10);
 strokeWeight(0.1);
 for (int i = 0; i < cities.getRowCount(); i++) {
 float latitude = cities.getFloat(i, "lat");
 float longitude = cities.getFloat(i, "lng");
 setXY(latitude, longitude);
 }
}

void setXY(float lat, float lng) {
 float x = map(lng, -180, 180, 0, width);
 float y = map(lat, 90, -90, 0, height);
 point(x, y);
}

Within setup(), notice a second parameter "header"
is added to loadTable(). If this is not done, the code
will treat the first line of the CSV file as data and not
as the title of each column.

The Table class has dozens of methods for features like adding
and removing columns and rows, getting a list of unique entries
in a column, or sorting the table. A more complete list of

Data 171

methods along with short examples is included in the Process-
ing Reference.

JSON
The JSON (JavaScript Object Notation) format is another com-
mon system for storing data. Like HTML and XML formats, the
elements have labels associated with them. For instance, the
data for a film could include labels for the title, director, release
year, rating, and more.

These labels will be paired with the data like this:

"title": "Alphaville"
"director": "Jean-Luc Godard"
"year": 1964
"rating": 7.2

To work as a JSON file, the film labels need a little more punctu-
ation to separate the elements. Commas are used between
each data pair and braces enclose it. The data defined within
the curly braces is a JSON object.

With these changes, our valid JSON data file looks like this:

{
 "title": "Alphaville",
 "director": "Jean-Luc Godard",
 "year": 1964,
 "rating": 7.2
}

There’s another interesting detail in this short JSON sample
related to data types: you’ll notice that the title and director
data is contained within quotes to mark them as String data
and the year and rating are without quotes to define them as
numbers. Specifically, the year is an integer and the rating is a
floating-point number. This distinction becomes important after
the data is loaded into a sketch.

To add another film to the list, a set of brackets placed at the top
and bottom are used to signify that the data is an array of JSON
objects. Each object is separated by a comma.

Putting it together looks like this:

172 Getting Started with Processing

[
 {
 "title": "Alphaville",
 "director": "Jean-Luc Godard",
 "year": 1964,
 "rating": 7.2
 },
 {
 "title": "Pierrot le Fou",
 "director": "Jean-Luc Godard",
 "year": 1965,
 "rating": 7.7
 }
]

This pattern can be repeated to include more films. At this
point, it’s interesting to compare this JSON notation to the cor-
responding table representation of the same data.

As a CSV file, the data looks like this:

title, director, year, rating
Alphaville, Jean-Luc Godard, 1964, 9.1
Pierrot le Fou, Jean-Luc Godard, 1965, 7.7

Notice that the CSV notation has fewer characters, which can
be important when working with massive data sets. On the
other hand, the JSON version is often easier to read because
each piece of data is labeled.

Now that the basics of JSON and its relation to a Table has been
introduced, let’s look at the code needed to read a JSON file into
a Processing sketch.

Example 12-4: Read a JSON File
This sketch loads the JSON file seen at the beginning of this
section, the file that includes only the data for the single film
Alphaville:

JSONObject film;

void setup() {
 film = loadJSONObject("film.json");
 String title = film.getString("title");
 String dir = film.getString("director");
 int year = film.getInt("year");

Data 173

 float rating = film.getFloat("rating");
 println(title + " by " + dir + ", " + year);
 println("Rating: " + rating);
}

The JSONObject class is used to create a code object to store the
data. Once that data is loaded, each individual piece of data can
be read in sequence or by requesting the data related to each
label. Notice that different data types are requested by the
name of the data type. The getString() method is used for the
name of the film and the getInt() method is used for the
release year.

Example 12-5: Visualize Data from a
JSON File
To work with the JSON file that includes more than one film, we
need to introduce a new class, the JSONArray. Here, the data file
started in the previous example has been updated to include all
of the director’s films from 1960–1966. The name of each film is
placed in order on screen according to the release year and
assigned a gray value based on the rating value.

There are several differences between this example and Exam-
ple 12-4 on page 173. The most important is the way the JSON
file is loaded into Film objects. The JSON file is loaded within
setup() and each JSONObject that represents a single film is
passed into the constructor of the Film class. The constructor
assigns the JSONObject data to String, float, and int fields
inside each Film object. The Film class also has a method to
display the name of the film:

Film[] films;

void setup() {
 size(480, 120);

174 Getting Started with Processing

 JSONArray filmArray = loadJSONArray("films.json");
 films = new Film[filmArray.size()];
 for (int i = 0; i < films.length; i++) {
 JSONObject o = filmArray.getJSONObject(i);
 films[i] = new Film(o);
 }
}

void draw() {
 background(0);
 for (int i = 0; i < films.length; i++) {
 int x = i*32 + 32;
 films[i].display(x, 105);
 }
}

class Film {
 String title;
 String director;
 int year;
 float rating;

 Film(JSONObject f) {
 title = f.getString("title");
 director = f.getString("director");
 year = f.getInt("year");
 rating = f.getFloat("rating");
 }

 void display(int x, int y) {
 float ratingGray = map(rating, 6.5, 8.1, 102, 255);
 pushMatrix();
 translate(x, y);
 rotate(-QUARTER_PI);
 fill(ratingGray);
 text(title, 0, 0);
 popMatrix();
 }
}

This example is bare bones in its visualization of the film data. It
shows how to load the data and how to draw based on those
data values, but it’s your challenge to format it to accentuate
what you find interesting about the data. For example, is it more
interesting to show the number of films Godard made each
year? Is it more interesting to compare and contrast this data

Data 175

with the films of another director? Will all of this be easier to
read with a different font, sketch size, or aspect ratio? The skills
introduced in the earlier chapters in this book can be applied to
bring this sketch to the next step of refinement.

Network Data and APIs
Public access to massive quantities of data collected by govern-
ments, corporations, organizations, and individuals is changing
our culture, from the way we socialize to how we think about
intangible ideas like privacy. This data is most often accessed
through software structures called APIs.

The acronym API is mysterious and its meaning—application
programming interface—isn’t much clearer. However, APIs are
essential for working with data and they aren’t necessarily diffi-
cult to understand. Essentially, they are requests for data made
to a service. When data sets are huge, it’s not practical or
desired to copy the entirety of the data; an API allows a pro-
grammer to request only the trickle of data that is relevant from
a massive sea.

This concept can be more clearly illustrated with a hypothetical
example. Let’s assume there’s an organization that maintains a
database of temperature ranges for every city within a country.
The API for this data set allows a programmer to request the
high and low temperatures for any city during the month of
October in 1972. In order to access this data, the request must
be made through a specific line or lines of code, in the format
mandated by the data service.

Some APIs are entirely public, but many require authentication,
which is typically a unique user ID or key so the data service can
keep track of its users. Most APIs have rules about how many, or
how frequently requests can be made. For instance, it might be
possible to make only 1,000 requests per month, or no more
than one request per second.

Processing can request data over the Internet when the com-
puter running the program is online. CSV, TSV, JSON, and XML
files can be loaded using the corresponding load function with a

176 Getting Started with Processing

URL as the parameter. For instance, the current weather in Cin-
cinnati is available in JSON format.

Read the URL closely to decode it:

1. It requests data from the api subdomain of the openweather-
map.org site.

2. It specifies a city to search for (q is an abbreviation for
query, and is frequently used in URLs that specify searches).

3. It also indicates that the data will be returned in imperial for-
mat, meaning the temperature will be in Fahrenheit. Replac-
ing imperial with metric will provide temperature data in
degrees Celsius.

Looking at this data from OpenWeatherMap is a more realistic
example of working with data found in the wild rather than the
simplified data sets introduced earlier. At the time of this writ-
ing, the file returned from that URL looks like this:

{"message":"accurate","cod":"200","count":1,"list":[{"id":
4508722,"name":"Cincinnati","coord":{"lon":-84.456886,"lat":
39.161999},"main":{"temp":34.16,"temp_min":34.16,"temp_max":
34.16,"pressure":999.98,"sea_level":1028.34,"grnd_level":
999.98,"humidity":77},"dt":1423501526,"wind":{"speed":
9.48,"deg":354.002},"sys":{"country":"US"},"clouds":{"all":
80},"weather":[{"id":803,"main":"Clouds","description":"broken
clouds","icon":"04d"}]}]}

This file is much easier to read when it’s formatted with line
breaks, and the JSON object and array structures defined with
braces and brackets:

{
 "message": "accurate",
 "count": 1,
 "cod": "200",
 "list": [{
 "clouds": {"all": 80},
 "dt": 1423501526,
 "coord": {
 "lon": -84.456886,
 "lat": 39.161999
 },
 "id": 4508722,
 "wind": {
 "speed": 9.48,

Data 177

http://bit.ly/cin-json

 "deg": 354.002
 },
 "sys": {"country": "US"},
 "name": "Cincinnati",
 "weather": [{
 "id": 803,
 "icon": "04d",
 "description": "broken clouds",
 "main": "Clouds"
 }],
 "main": {
 "humidity": 77,
 "pressure": 999.98,
 "temp_max": 34.16,
 "sea_level": 1028.34,
 "temp_min": 34.16,
 "temp": 34.16,
 "grnd_level": 999.98
 }
 }]
}

Note that brackets are seen in the “list” and “weather” sec-
tions, indicating an array of JSON objects. Although the array in
this example only contains a single item, in other cases, the API
might return multiple days or variations of the data from multi-
ple weather stations.

Example 12-6: Parsing the Weather
Data
The first step in working with this data is to study it and then to
write minimal code to extract the desired data. In this case,
we’re curious about the current temperature. We can see that
our temperature data is 34.16. It’s labeled as temp and it’s inside
the main object, which is inside the list array. A function called
getTemp() was written for this example to work with the format
of this specific JSON file organization:

void setup() {
 float temp = getTemp("cincinnati.json");
 println(temp);
}

float getTemp(String fileName) {

178 Getting Started with Processing

 JSONObject weather = loadJSONObject(fileName);
 JSONArray list = weather.getJSONArray("list");
 JSONObject item = list.getJSONObject(0);
 JSONObject main = item.getJSONObject("main");
 float temperature = main.getFloat("temp");
 return temperature;
}

The name of the JSON file, cincinnati.json, is passed into the get
Temp() function inside setup() and loaded there. Next, because
of the format of the JSON file, a series of JSONArray and JSONOb
ject files are needed to get deeper and deeper into the data
structure to finally arrive at our desired number. This number is
stored in the temperature variable and then returned by the
function to be assigned to the temp variable in setup() where it is
printed to the Console.

Example 12-7: Chaining Methods
The sequence of JSON variables created in succession in the
last example can be approached differently by chaining the get
methods together. This example works like Example 12-6 on
page 178, but the methods are connected with the dot operator,
rather than calculated one at a time and assigned to objects in
between:

void setup() {
 float temp = getTemp("cincinnati.json");
 println(temp);
}

float getTemp(String fileName) {
 JSONObject weather = loadJSONObject(fileName);
 return weather.getJSONArray("list").getJSONObject(0).
 getJSONObject("main").getFloat("temp");
}

Also note how the final temperature value is returned by the
getTemp() function. In Example 12-6 on page 178, a float vari-
able is created to store the decimal value, then that value is
returned. Here, the data created by the get methods is returned
directly, without intermediate variables.

This example can be modified to access more of the data from
the feed and to build a sketch that displays the data to the

Data 179

screen rather than just writing it to the Console. You can also
modify it to read data from another online API—you’ll find that
the data returned by many APIs shares a similar format.

Robot 10: Data

The final robot example in this book is different from the rest
because it has two parts. The first part generates a data file
using random values and for loops and the second part reads
that data file to draw an army of robots onto the screen.

The first sketch uses two new code elements, the PrintWriter
class and the createWriter() function. Used together, they cre-
ate and open a file in the sketchbook folder to store the data
generated by the sketch. In this example, the object created
from PrintWriter is called output and the file is called bot-
Army.tsv. In the loops, data is written into the file by running the
println() method on the output object. Here, random values
are used to define which of three robot images will be drawn for
each coordinate. For the file to be correctly created, the flush()
and close() methods must be run before the program is
stopped.

180 Getting Started with Processing

The code that draws an ellipse is a visual preview to reveal the
location of the coordinate on screen, but notice that the ellipse
isn’t recorded into the file:

PrintWriter output;

void setup() {
 size(720, 480);
 // Create the new file
 output = createWriter("botArmy.tsv");
 // Write a header line with the column titles
 output.println("type\tx\ty");
 for (int y = 0; y <= height; y += 120) {
 for (int x = 0; x <= width; x += 60) {
 int robotType = int(random(1, 4));
 output.println(robotType + "\t" + x + "\t" + y);
 ellipse(x, y, 12, 12);
 }
 }
 output.flush(); // Write the remaining data to the file
 output.close(); // Finish the file
}

After that program is run, open the botArmy.tsv file in the
sketchbook folder to see how the data is written. The first five
lines of that file will be similar to this:

type x y
3 0 0
1 20 0
2 40 0
1 60 0
3 80 0

The first column is used to define which robot image to use, the
second column is the x coordinate, and the third column is the y
coordinate.

The next sketch loads the botArmy.tsv file and uses the data for
these purposes:

Table robots;
PShape bot1;
PShape bot2;
PShape bot3;

void setup() {
 size(720, 480);

Data 181

 background(0, 153, 204);
 bot1 = loadShape("robot1.svg");
 bot2 = loadShape("robot2.svg");
 bot3 = loadShape("robot3.svg");
 shapeMode(CENTER);
 robots = loadTable("botArmy.tsv", "header");
 for (int i = 0; i < robots.getRowCount(); i++) {
 int bot = robots.getInt(i, "type");
 int x = robots.getInt(i, "x");
 int y = robots.getInt(i, "y");
 float sc = 0.3;
 if (bot == 1) {
 shape(bot1, x, y, bot1.width*sc, bot1.height*sc);
 } else if (bot == 2) {
 shape(bot2, x, y, bot2.width*sc, bot2.height*sc);
 } else {
 shape(bot3, x, y, bot3.width*sc, bot3.height*sc);
 }
 }
}

A more concise (and flexible) variation of this sketch uses
arrays and the rows() method of the Table class as a more
advanced approach:

int numRobotTypes = 3;
PShape[] shapes = new PShape[numRobotTypes];
float scalar = 0.3;

void setup() {
 size(720, 480);
 background(0, 153, 204);
 for (int i = 0; i < numRobotTypes; i++) {
 shapes[i] = loadShape("robot" + (i+1) + ".svg");
 }
 shapeMode(CENTER);
 Table botArmy = loadTable("botArmy.tsv", "header");
 for (TableRow row : botArmy.rows()) {
 int robotType = row.getInt("type");
 int x = row.getInt("x");
 int y = row.getInt("y");
 PShape bot = shapes[robotType - 1];
 shape(bot, x, y, bot.width*scalar, bot.height*scalar);
 }
}

182 Getting Started with Processing

13/Extend

This book focuses on using Processing
for interactive graphics, because that’s
the core of what Processing does. How-
ever, the software can do much more and
is often part of projects that move
beyond a single computer screen. For
example, Processing has been used to
control machines, create images used in
feature films, and export models for 3D
printing.
Over the last decade, Processing has been used to make music
videos for Radiohead and R.E.M., to create illustrations for pub-
lications such as Nature and the New York Times, to output
sculptures for gallery exhibitions, to control huge video walls, to
knit sweaters, and much more. Processing has this flexibility
because of its system of libraries.

A Processing library is a collection of code that extends the soft-
ware beyond its core functions and classes. Libraries have been
important to the growth of the project, because they let devel-
opers add new features quickly. As smaller, self-contained
projects, libraries are easier to manage than if these features
were integrated into the main software.

To use a library, select Import Library from the Sketch menu and
select the library you want to use from the list. Choosing a
library adds a line of code that indicates that the library will be
used with the current sketch.

183

For instance, when the PDF Export Library (pdf) is added, this
line of code is added to the top of the sketch:

import processing.pdf.*;

In addition to the libraries included with Processing (these are
called the core libraries), there are over 100 contributed libraries
that are linked from the Processing website. All libraries are lis-
ted online at http://processing.org/reference/libraries/.

Before a contributed library can be imported through the
Sketch menu, it must be added through the Library Manager.
Select the Import Library option from the Sketchbook menu
and then select Add Library to open the Library Manager inter-
face. Click a library description and then click the Install button
to download it to your computer.

The downloaded files are saved to the libraries folder that is
located in your sketchbook. You can find the location of your
sketchbook by opening the Preferences. The Library Manager
can also be used to update and remove libraries.

As mentioned before, there are more than 100 Processing
libraries, so they clearly can’t all be discussed here. We’ve
selected a few that we think are fun and useful to introduce in
this chapter.

Sound
The Sound audio library introduced with Processing 3.0 has the
ability to play, analyze, and generate (synthesize) sound. This
library needs to be downloaded with the Library Manager as
described earlier. (It’s not included with the main Processing
download because of its size.)

Like the images, shape files, and fonts introduced in Chapter 7,
a sound file is another type of media to augment a Processing
sketch. Processing’s Sound library can load a range of file for-
mats including WAV, AIFF, and MP3. Once a sound file is loaded,
it can be played, stopped, and looped, or even distorted using
different “effects” classes.

184 Getting Started with Processing

http://processing.org/reference/libraries/

Example 13-1: Play a Sample
The most common use of the Sound library is to play a sound as
background music or when an event happens on screen. The
following example builds on Example 8-5 on page 107 to play a
sound when the shape hits the edges of the screen. The blip.wav
file is included in the media folder that you downloaded in Chap-
ter 7 from http://www.processing.org/learning/books/
media.zip.

As with other media, the SoundFile object is defined at the top
of the sketch, it’s loaded within setup(), and after that, it can be
used anywhere in the program:

import processing.sound.*;

SoundFile blip;

int radius = 120;
float x = 0;
float speed = 1.0;
int direction = 1;

void setup() {
 size(440, 440);
 ellipseMode(RADIUS);
 blip = new SoundFile(this, "blip.wav");
 x = width/2; // Start in the center
}

void draw() {
 background(0);
 x += speed * direction;
 if ((x > width-radius) || (x < radius)) {
 direction = -direction; // Flip direction
 blip.play();
 }
 if (direction == 1) {
 arc(x, 220, radius, radius, 0.52, 5.76); // Face right
 } else {
 arc(x, 220, radius, radius, 3.67, 8.9); // Face left
 }
}

The sound is triggered each time its play() method is run. This
example works well because the sound is only played when the

Extend 185

http://www.processing.org/learning/books/media.zip
http://www.processing.org/learning/books/media.zip

value of the x variable is at the edges of the screen. If the sound
were played each time through draw(), the sound would restart
60 times each second and wouldn’t have time to finish playing.
The result is a rapid clipping sound. To play a longer sample
while a program runs, call the play() or loop() method for that
sound inside setup() so the sound is triggered only a single
time.

The SoundFile class has many methods to control
how a sound is played. The most essential are
play() to play the sample a single time, loop() to
play it from beginning to end over and over, stop() to
halt the playback, and jump() to move to a specific
moment within the file.

Example 13-2: Listen to a Microphone
In addition to playing a sound, Processing can listen. If your
computer has a microphone, the Sound library can read live
audio through it. Sounds from the mic can be analyzed, modi-
fied, and played:

import processing.sound.*;

AudioIn mic;
Amplitude amp;

void setup() {

186 Getting Started with Processing

 size(440, 440);
 background(0);
 // Create an audio input and start it
 mic = new AudioIn(this, 0);
 mic.start();
 // Create a new amplitude analyzer and patch into input
 amp = new Amplitude(this);
 amp.input(mic);
}

void draw() {
 // Draw a background that fades to black
 noStroke();
 fill(26, 76, 102, 10);
 rect(0, 0, width, height);
 // The analyze() method returns values between 0 and 1,
 // so map() is used to convert the values to larger numbers
 float diameter = map(amp.analyze(), 0, 1, 10, width);
 // Draw the circle based on the volume
 fill(255);
 ellipse(width/2, height/2, diameter, diameter);
}

There are two parts to getting the amplitude (volume) from an
attached microphone. The AudioIn class is used to get the sig-
nal data from the mic and the Amplitude class is used to meas-
ure the signal. Objects from both classes are defined at the top
of the code and created inside setup().

After the Amplitude object (named amp here) is made, the
AudioIn object (named mic) is patched into the amp object with
the input() method. After that, the analyze() method of the amp
object can be run at any time to read the amplitude of the
microphone data within the program. In this example, that is
done each time through draw() and that value is then used to
set the size of the circle.

In addition to playing a sound and analyzing sound as demon-
strated in the last two examples, Processing can synthesize
sound directly. The fundamentals of sound synthesis are wave-
forms that include the sine wave, triangle wave, and square
wave.

Extend 187

A sine wave sounds smooth, a square wave is harsh, and a trian-
gle wave is somewhere between. Each wave has a number of
properties. The frequency, measured in hertz, determines the
pitch, the highness or lowness of the tone. The amplitude of the
wave determines the volume, the degree of loudness.

Example 13-3: Create a Sine Wave
In the following example, the value of mouseX determines the fre-
quency of a sine wave. As the mouse moves left and right, the
audible frequency and corresponding wave visualization
increase and decrease:

import processing.sound.*;

SinOsc sine;

float freq = 400;

void setup() {
 size(440, 440);
 // Create and start the sine oscillator
 sine = new SinOsc(this);
 sine.play();
}

void draw() {
 background(176, 204, 176);
 // Map the mouseX value from 20Hz to 440Hz for frequency
 float hertz = map(mouseX, 0, width, 20.0, 440.0);
 sine.freq(hertz);

188 Getting Started with Processing

 // Draw a wave to visualize the frequency of the sound
 stroke(26, 76, 102);
 for (int x = 0; x < width; x++) {
 float angle = map(x, 0, width, 0, TWO_PI * hertz);
 float sinValue = sin(angle) * 120;
 line(x, 0, x, height/2 + sinValue);
 }
}

The sine object, created from the SinOsc class, is defined at the
top of the code and then created inside setup(). Like working
with a sample, the wave needs to be played with the play()
method to start generating the sound. Within draw(), the freq()
method continuously sets the frequency of the waveform based
on the left-right position of the mouse.

Image and PDF Export
The animated images created by a Processing program can be
turned into a file sequence with the saveFrame() function. When
saveFrame() appears at the end of draw(), it saves a numbered
sequence of TIFF-format images of the program’s output
named screen-0001.tif, screen-0002.tif, and so on, to the
sketch’s folder.

These files can be imported into a video or animation program
and saved as a movie file. You can also specify your own file-
name and image file format with a line of code like this:

saveFrame("output-####.png");

Use the # (hash mark) symbol to show where the numbers will
appear in the filename. They are replaced with the actual frame
numbers when the files are saved. You can also specify a sub-
folder to save the images into, which is helpful when working
with many image frames:

saveFrame("frames/output-####.png");

When using saveFrame() inside draw(), a new file is
saved each frame—so watch out, as this can quickly
fill your sketch folder with thousands of files.

Extend 189

Example 13-4: Saving Images
This example shows how to save images by storing enough
frames for a two-second animation. It loads and moves the
robot file from “Robot 5: Media” on page 101. See Chapter 7 for
instructions for downloading the file robot1.svg and adding it to
the sketch.

The example runs the program at 30 frames per second and
then exits after 60 frames:

PShape bot;
float x = 0;

void setup() {
 size(720, 480);
 bot = loadShape("robot1.svg");
 frameRate(30);
}

void draw() {
 background(0, 153, 204);
 translate(x, 0);
 shape(bot, 0, 80);
 saveFrame("frames/SaveExample-####.tif");
 x += 12;

 if (frameCount > 60) {
 exit();
 }
}

Processing will write an image based on the file extension that
you use (.png, .jpg, or .tif are all built in, and some platforms
may support others). To retrieve the saved files, go to Sketch →
Show Sketch Folder.

190 Getting Started with Processing

A .tif image is saved uncompressed, which is fast but takes up a
lot of disk space. Both .png and .jpg will create smaller files, but
because of the compression they will usually require more time
to save, making the sketch run slowly.

If your desired output is vector graphics, you can write the out-
put to PDF files for higher resolution. The PDF Export library
makes it possible to write PDF files directly from a sketch. These
vector graphics files can be scaled to any size without losing
resolution, which makes them ideal for print output—from post-
ers and banners to entire books.

Example 13-5: Draw to a PDF
This example builds on Example 13-4 on page 190 to draw more
robots, but it removes the motion. The PDF library is imported
at the top of the sketch to extend Processing to be able to write
PDF files.

This sketch creates a PDF file called Ex-13-5.pdf because of the
third and fourth parameters to size():

import processing.pdf.*;

PShape bot;

void setup() {
 size(600, 800, PDF, "Ex-13-5.pdf");
 bot = loadShape("robot1.svg");
}

void draw() {
 background(0, 153, 204);
 for (int i = 0; i < 100; i++) {
 float rx = random(-bot.width, width);
 float ry = random(-bot.height, height);
 shape(bot, rx, ry);
 }
 exit();
}

The geometry is not drawn on the screen; it is written directly
into the PDF file, which is saved into the sketch’s folder. The
code in this example runs once and then exits at the end of
draw(). The resulting output is shown in Figure 13-1.

Extend 191

There are more PDF Export examples included with the Pro-
cessing software. Look in the PDF Export (pdf) section of the
Processing examples to see more techniques.

Figure 13-1. PDF export from Example 3-5

192 Getting Started with Processing

Hello, Arduino
Arduino is an electronics prototyping platform with a series of
microcontroller boards and the software to program them. Pro-
cessing and Arduino share a long history together; they are sis-
ter projects with many similar ideas and goals, though they
address separate domains. Because they share the same editor
and programming environment and a similar syntax, it’s easy to
move between them and to transfer knowledge about one into
the other.

In this section, we focus on reading data into Processing from
an Arduino board and then visualize that data on screen. This
makes it possible to use new inputs into Processing programs
and to allow Arduino programmers to see their sensor input as
graphics. These new inputs can be anything that attaches to an
Arduino board. These devices range from a distance sensor to a
compass or a mesh network of temperature sensors.

This section assumes that you have an Arduino board and that
you already have a basic working knowledge of how to use it. If
not, you can learn more online at http://www.arduino.cc and in
the excellent book Getting Started with Arduino by Massimo
Banzi (Maker Media). Once you’ve covered the basics, you can
learn more about sending data between Processing and Arduino
in another outstanding book, Making Things Talk by Tom Igoe
(Maker Media).

Data can be transferred between a Processing sketch and an
Arduino board with some help from the Processing Serial
Library. Serial is a data format that sends one byte at a time. In
the world of Arduino, a byte is a data type that can store values
between 0 and 255; it works like an int, but with a much smaller
range. Larger numbers are sent by breaking them into a list of
bytes and then reassembling them later.

In the following examples, we focus on the Processing side of
the relationship and keep the Arduino code simple. We visualize
the data coming in from the Arduino board one byte at a time.
With the techniques covered in this book and the hundreds of
Arduino examples online, we hope this will be enough to get you
started.

Extend 193

http://www.arduino.cc

Example 13-6: Read a Sensor
The following Arduino code is used with the next three Process-
ing examples:

// Note: This is code for an Arduino board, not Processing

int sensorPin = 0; // Select input pin
int val = 0;

void setup() {
 Serial.begin(9600); // Open serial port
}

void loop() {
 val = analogRead(sensorPin) / 4; // Read value from sensor
 Serial.write((byte)val); // Print variable to serial port
 delay(100); // Wait 100 milliseconds
}

There are two important details to note about this Arduino
example. First, it requires attaching a sensor into the analog
input on pin 0 on the Arduino board. You might use a light sen-
sor (also called a photo resistor, photocell, or light-dependent
resistor) or another analog resistor such as a thermistor
(temperature-sensitive resistor), flex sensor, or pressure sensor
(force-sensitive resistor). The circuit diagram and drawing of the
breadboard with components are shown in Figure 13-2. Next,
notice that the value returned by the analogRead() function is
divided by 4 before it’s assigned to val. The values from analog
Read() are between 0 and 1023, so we divide by 4 to convert
them to the range of 0 to 255 so that the data can be sent in a
single byte.

194 Getting Started with Processing

Figure 13-2. Attaching a light sensor (photo resistor) to analog
in pin 0

Example 13-7: Read Data from the
Serial Port
The first visualization example shows how to read the serial data
in from the Arduino board and how to convert that data into the
values that fit to the screen dimensions:

import processing.serial.*;

Serial port; // Create object from Serial class
float val; // Data received from the serial port

void setup() {
 size(440, 220);
 // IMPORTANT NOTE:
 // The first serial port retrieved by Serial.list()
 // should be your Arduino. If not, uncomment the next
 // line by deleting the // before it. Run the sketch
 // again to see a list of serial ports. Then, change
 // the 0 in between [and] to the number of the port
 // that your Arduino is connected to.
 //printArray(Serial.list());
 String arduinoPort = Serial.list()[0];
 port = new Serial(this, arduinoPort, 9600);
}

Extend 195

void draw() {
 if (port.available() > 0) { // If data is available,
 val = port.read(); // read it and store it in val
 val = map(val, 0, 255, 0, height); // Convert the value
 }
 rect(40, val-10, 360, 20);
}

The Serial library is imported on the first line and the serial port
is opened in setup(). It may or may not be easy to get your Pro-
cessing sketch to talk with the Arduino board; it depends on
your hardware setup. There is often more than one device that
the Processing sketch might try to communicate with. If the
code doesn’t work the first time, read the comment in setup()
carefully and follow the instructions.

Within draw(), the value is brought into the program with the
read() method of the Serial object. The program reads the data
from the serial port only when a new byte is available. The
available() method checks to see if a new byte is ready and
returns the number of bytes available. This program is written
so that a single new byte will be read each time through draw().
The map() function converts the incoming value from its initial
range from 0 to 255 to a range from 0 to the height of the
screen; in this program, it’s from 0 to 220.

Example 13-8: Visualizing the Data
Stream
Now that the data is coming through, we’ll visualize it in a more
interesting format. The values coming in directly from a sensor
are often erratic, and it’s useful to smooth them out by averag-
ing them. Here, we present the raw signal from the light sensor
illustrated in the top half of the example and the smoothed sig-
nal in the bottom half:

196 Getting Started with Processing

import processing.serial.*;

Serial port; // Create object from Serial class
float val; // Data received from the serial port
int x;
float easing = 0.05;
float easedVal;

void setup() {
 size(440, 440);
 frameRate(30);
 String arduinoPort = Serial.list()[0];
 port = new Serial(this, arduinoPort, 9600);
 background(0);
}

void draw() {
 if (port.available() > 0) { // If data is available,
 val = port.read(); // read it and store it in val
 val = map(val, 0, 255, 0, height/2); // Convert the values
 }
 float targetVal = val;
 easedVal += (targetVal - easedVal) * easing;

 stroke(0);
 line(x, 0, x, height); // Black line
 stroke(255);
 line(x+1, 0, x+1, height); // White line
 line(x, 220, x, val); // Raw value
 line(x, 440, x, easedVal + 220); // Averaged value

 x++;

Extend 197

 if (x > width) {
 x = 0;
 }
}

Similar to Example 5-8 on page 54 and Example 5-9 on page 55,
this sketch uses the easing technique. Each new byte from the
Arduino board is set as the target value, the difference between
the current value and the target value is calculated, and the cur-
rent value is moved closer to the target. Adjust the easing vari-
able to affect the amount of smoothing applied to the incoming
values.

Example 13-9: Another Way to Look
at the Data
This example is inspired by radar display screens. The values
are read in the same way from the Arduino board, but they are
visualized in a circular pattern using the sin() and cos() func-
tions introduced earlier in Example 8-12 on page 115, Example
8-13 on page 115, and Example 8-15 on page 116:

import processing.serial.*;

Serial port; // Create object from Serial class
float val; // Data received from the serial port
float angle;
float radius;

void setup() {

198 Getting Started with Processing

 size(440, 440);
 frameRate(30);
 strokeWeight(2);
 String arduinoPort = Serial.list()[0];
 port = new Serial(this, arduinoPort, 9600);
 background(0);
}

void draw() {
 if (port.available() > 0) { // If data is available,
 val = port.read(); // read it and store it in val
 // Convert the values to set the radius
 radius = map(val, 0, 255, 0, height * 0.45);
 }

 int middleX = width/2;
 int middleY = height/2;
 float x = middleX + cos(angle) * height/2;
 float y = middleY + sin(angle) * height/2;
 stroke(0);
 line(middleX, middleY, x, y);

 x = middleX + cos(angle) * radius;
 y = middleY + sin(angle) * radius;
 stroke(255);
 line(middleX, middleY, x, y);

 angle += 0.01;
}

The angle variable is updated continuously to move the line
drawing the current value around the circle, and the val variable
scales the length of the moving line to set its distance from the
center of the screen. After one time around the circle, the values
begin to write on top of the previous data.

We’re excited about the potential of using Processing and Ardu-
ino together to bridge the world of software and electronics.
Unlike the examples printed here, the communication can be
bidirectional. Elements on screen can also affect what’s happen-
ing on the Arduino board. This means you can use a Processing
program as an interface between your computer and motors,
speakers, lights, cameras, sensors, and almost anything else
that can be controlled with an electrical signal. Again, check out
http://www.arduino.cc for more information about Arduino.

Extend 199

http://www.arduino.cc

A/Coding Tips

Coding is a type of writing. Like all types of writing, code has
specific rules. For comparison, we’ll quickly mention some of
the rules for English that you probably haven’t thought about in
a while because they are second nature. Some of the more invis-
ible rules are writing from left to right and putting a space
between each word. More overt rules are spelling conventions,
capitalizing the names of people and places, and using punctua-
tion at the end of sentences to provide emphasis! If we break
one or more of these rules when writing an email to a friend, the
message still gets through. For example, “hello ben. how r u
today” communicates nearly as well as, “Hello, Ben. How are
you today?” However, flexibility with the rules of writing don’t
transfer to programming. Because you’re writing to communi-
cate with a computer, rather than another person, you need to
be more precise and careful. One misplaced character is often
the difference between a program that runs and one that
doesn’t.

Processing tries to tell you where you’ve made mistakes and to
guess what the mistake is. When you click the Run button, if
there are grammar (syntax) problems with your code (we call
them bugs), then the Message Area turns red and Processing
tries to highlight the line of code that it suspects as the problem.
The line of code with the bug is often one line above or below the
highlighted line, though in some cases, it’s nowhere close. The
text in the Message Area tries to be helpful and suggests the
potential problem, but sometimes the message is too cryptic to
understand. For a beginner, these error messages can be frus-
trating. Understand that Processing is a simple piece of soft-
ware that’s trying to be helpful, but it has a limited knowledge of
what you’re trying to do.

Long error messages are printed to the Console in more detail,
and sometimes scrolling through that text can offer a hint. Addi-
tionally, Processing can find only one bug at a time. If your

201

program has many bugs, you’ll need to keep running the pro-
gram and fix them one at a time.

Please read and reread the following suggestions carefully to
help you write clean code.

Functions and Parameters
Programs are composed of many small parts, which are grou-
ped together to make larger structures. We have a similar sys-
tem in English: words are grouped into phrases, which are com-
bined to make sentences, which are combined to create para-
graphs. The idea is the same in code, but the small parts have
different names and behave differently. Functions and parame-
ters are two important parts. Functions are the basic building
blocks of a Processing program. Parameters are values that
define how the function behaves.

Consider a function like background(). Like the name suggests,
it’s used to set the background color of the Display Window. The
function has three parameters that define the color. These num-
bers define the red, green, and blue components of the color to
define the composite color. For example, the following code
draws a blue background:

background(51, 102, 153);

Look carefully at this single line of code. The key details are the
parentheses after the function name that enclose the numbers,
the commas between each number, and the semicolon at the
end of the line. The semicolon is used like a period. It signifies
that one statement is over so the computer can look for the
start of the next. All of these parts need to be there for the code
to run. Compare the preceding example line to these three bro-
ken versions of the same line:

background 51, 102, 153; // Error! Missing the parentheses
background(51 102, 153); // Error! Missing a comma
background(51, 102, 153) // Error! Missing the semicolon

The computer is very unforgiving about even the smallest omis-
sion or deviation from what it’s expecting. If you remember
these parts, you’ll have fewer bugs. But if you forget to type
them, which we all do, it’s not a problem. Processing will alert

202 Appendix A

you about the problem, and when it’s fixed, the program will run
well.

Color Coding
The Processing environment color-codes different parts of each
program. Words that are a part of Processing are drawn as blue
and orange to distinguish them from the parts of the program
that you invent. The words that are unique to your program,
such as your variable and function names, are drawn in black.
Basic symbols such as (), \[\], and > are also black.

Comments
Comments are notes that you write to yourself (or other people)
inside the code. You should use them to clarify what the code is
doing in plain language and provide additional information such
as the title and author of the program. A comment starts with
two forward slashes (//) and continues until the end of the line:

// This is a one-line comment

You can make a multiple-line comment by starting with /* and
ending with */. For instance:

/* This comment
 continues for more
 than one line
*/

When a comment is correctly typed, the color of the text will
turn gray. The entire commented area turns gray so you can
clearly see where it begins and ends.

Uppercase and Lowercase
Processing distinguishes uppercase letters from lowercase let-
ters and therefore reads “Hello” as a distinct word from “hello”.
If you’re trying to draw a rectangle with the rect() function and
you write rect(), the code won’t run. You can see if Processing
recognizes your intended code by checking the color of the text.

Appendix A 203

Style
Processing is flexible about how much space is used to format
your code. Processing doesn’t care if you write:

rect(50, 20, 30, 40);

or:

rect (50,20,30,40);

or:

rect (50,20,
 30, 40) ;

However, it’s in your best interest to make the code easy to read.
This becomes especially important as the code grows in length.
Clean formatting makes the structure of the code immediately
legible, and sloppy formatting often obscures problems. Get
into the habit of writing clean code. There are many different
ways to format the code well, and the way you choose to space
things is a personal preference.

Console
The Console is the bottom area of the Processing Development
Environment. You can write messages to the Console with the
println() function. For example, the following code prints a
message followed by the current time:

println("Hello, Processing.");
println("The time is " + hour() + ":" + minute());

The Console is essential to seeing what is happening inside of
your programs while they run. It’s used to print the value of vari-
ables so you can track them, to confirm if events are happening,
and to determine where a program is having a problem.

One Step at a Time
We recommend writing a few lines of code at a time and running
the code frequently to make sure that bugs don’t accumulate
without your knowledge. Every ambitious program is written
one line at a time. Break your project into simpler subprojects
and complete them one at a time so that you can have many

204 Appendix A

small successes, rather than a swarm of bugs. If you have a bug,
try to isolate the area of the code where you think the problem
lies. Try to think of fixing bugs as solving a mystery or puzzle. If
you get stuck or frustrated, take a break to clear your head or
ask a friend for help. Sometimes, the answer is right under your
nose but requires a second opinion to make it clear.

Appendix A 205

B/Data Types

There are different categories of data. For instance, think about
the data on an ID card. The card has numbers to store weight,
height, date of birth, street address, and postal code. It has
words to store a person’s name and city. There’s also image
data (a photo) and often an organ donor choice, which is a
yes/no decision. In Processing, we have different data types to
store each kind of data. Each of the following types is explained
in more detail elsewhere in the book, but this is a summary:

Name Description Range of values

int Integers (whole numbers) −2,147,483,648 to
2,147,483,647

float Floating-point values −3.40282347E+38 to
3.40282347E+38

boolean Logical value true or false

char Single character A–z, 0–9, and symbols

String Sequence of characters Any letter, word, sentence,
and so on

PImage PNG, JPG, or GIF image N/A

PFont Use the createFont()
function or the Create Font
tool to make fonts to use
with Processing

N/A

PShape SVG file N/A

As a guideline, a float number has about four digits of accu-
racy after the decimal point. If you’re counting or taking small
steps, you should use an int value to take the steps, and then
perhaps scale it by a float if necessary when putting it to use.

207

There are more data types than those mentioned here, but
these are the most useful for the work typically made with Pro-
cessing. In fact, as mentioned in Chapter 10, there are infinite
types of data, because every new class is a different data type.

208 Appendix B

C/Order of
Operations

When mathematical calculations are performed in a program,
each operation takes place according to a pre-specified order.
This order of operations ensures that the code is run the same
way every time. This is no different from arithmetic or algebra,
but programming has other operators that are less familiar.

In the following table, the operators on the top are run before
those on the bottom—therefore, an operation inside parenthe-
ses will run first and an assignment will run last:

Name Symbol Examples

Parentheses () a * (b + c)

Postfix, Unary ++ −− ! a++ −−b !c

Multiplicative * / % a * b

Additive + − a + b

Relational > < <= >= if (a > b)

Equality == != if (a == b)

Logical AND && if (mousePressed && (a > b))

Logical OR || if (mousePressed || (a > b))

Assignment = += −= *= /= %= a = 44

209

D/Variable Scope

The rule of variable scope is defined simply: a variable created
inside a block (code enclosed within braces: { and }) exists only
inside that block. This means that a variable created inside
setup() can be used only within the setup() block, and likewise,
a variable declared inside draw() can be used only inside the
draw() block. The exception to this rule is a variable declared
outside of setup() and draw(). These variables can be used in
both setup() and draw() (or inside any other function that you
create). Think of the area outside of setup() and draw() as an
implied code block. We call these variables global variables,
because they can be used anywhere within the program. We call
a variable that is used only within a single block a local variable.
Following are a couple of code examples that further explain the
concept. First:

int i = 12; // Declare global variable i and assign 12

void setup() {
 size(480, 320);
 int i = 24; // Declare local variable i and assign 24
 println(i); // Prints 24 to the Console
}

void draw() {
 println(i); // Prints 12 to the Console
}

And second:

void setup() {
 size(480, 320);
 int i = 24; // Declare local variable i and assign 24
}

void draw() {
 println(i); // ERROR! The variable i is local to setup()
}

211

Index

Symbols
!= (not equal to) operator, 42
(hashmark) symbol, 189
% (modulo) operator, 157
&& (logical AND) operator, 69
// (double slashes) for code com-

ments, 30-31
< (less than or equal to) operator,

42
< (less than) operator, 42
= (equal to) operator, 42
== (equal to) operator, 58, 68
> (greater than) operator, 42
>= (greater than or equal to) oper-

ator, 42
|| (logical OR) operator, 69

A
alpha values, 27
analyze () method, 187
animation, 103-119

bouncing shapes off wall,
107-107

circular motion, 113-116
drawing/moving shapes ran-

domly, 109-111
frame rates, 103-104
image/PDF export, 189-192
moving shapes, 104-105
sine wave values/movement,

115-116
speed and direction, 104-107
spirals, 116
timers, 111-113
tween positions, 108-109
wrapping shapes around screen,

105-107

APIs (application programming
interfaces), 176-180

arc () function, 18
Arduino, 193-199

overview, 193
reading data from serial port,

195-196
reading sensors, 194-195
visualizing data, 196-199

arithmetic operations, 38-40
arrays, 149-162

creating, 152-155
defined, 149
filling in a for loop, 155-156
of objects, 158-161
repetition and, 155-158
tracking mouse movements

with, 156-158
variables versus, 149-152

arrow keys, detecting, 70
arrows, drawing, 28
assignment operator, 39

B
background () function, 23, 52-53,

202
beginShape () function, 28
blocks, for loop, 41
boolean data, 56, 135, 207
bugs, detecting and fixing, 201-205

C
chaining methods, 179-180
char data, 207
char variables, 67
circles

cursor position relative to,
63-64

213

drawing, 9
circular motion, 113-116
classes

of data, 166
of objects, 137-142, 166

clicks, mouse, 56-61
close parameter, 28
code

coding tips, 201-205
color coding, 203
comments, 203
functions and parameters,

202-203
modifying with variables, 47
order of operations, 209
repeating with for loops, 40-45
style, 204

color
color coding, 203
drawing with, 23-28
RGB, 26

columns and rows, creating with for
loops, 45

comments
adding to code with //, 30-31
tips for writing, 203

Console, 8
constrain () function, 111
constructors, 138-139
contributed libraries, 184
core libraries, 184
cos () and sin () functions, 113-116
createShape () function, 99
createWriter () function, 180
CSV files, 167, 173
cursors, finding location of, 61-66

D
data, 165-182

and APIs, 176-180
boolean, 56, 135, 207
chaining methods, 179-180
char, 207
classes of, 166
data visualization, 165
float, 104, 131, 135, 207

int, 36, 135, 207
JSON, 172-176
JSONArray, 166
JSONObject, 166, 174
network (see see APIs (applica-

tion programming inter-
faces))

overview, 165-166
PFont, 135, 166, 207
PImage, 135, 166, 207
PShape, 135, 166, 207
reading from serial port,

195-196
String, 135, 166, 207
Table, 166-172
visualizing, 196-199

data types, 36-38, 143, 165,
207-208

degree measurements, 19
Display Window, 13
dist () function, 53
downloading Processing, 7-8
draw () function, 49, 51, 103
drawing, 13-33

avoiding arrays with, 154
basic shapes, 14-19
circles, 9
with color, 23-28
complex shapes, 29-30
continuous lines, 53
custom shapes, 28-30
drawing modes, 22
ellipses, 9, 17-19, 22
with fonts, 95-97
lines, 14-16
order of, 20-21
points, 14
rectangles, 16, 22
saving to PDF, 191-192
shape properties, 21-22
with shapes, 98
shapes, randomly, 109
windows, 14

E
easing, 54-56

214 Index

elements, in arrays, 152
ellipseMode () function, 22
ellipses, drawing, 9, 17-19
else blocks, 58-60
embedded for loops, 44
endshape () function, 28
Examples and Reference, 11-12
exporting sketches, 11
expressions, 39

F
fields, 136, 138
fill () function, 23, 25
float data, 104, 131, 135, 207
float variable, 37
fonts, 94-97

drawing text in a box, 96
drawing with, 95-97

for loops, 40-45
creating rows and columns with,

45
embedded, 44
filling arrays with values in,

155-156
for fanning out lines, 44
for halftone dots, 46
for kinking lines, 44
for pins and lines, 46
for quick code changes, 43

frame rates, 49, 103-104
frames, 103
functions, 121-133

basics of, 122-123
coding tips, 202
creating, 124-130
defined, 13
return values, 130

G
getFloat () method, 168
getInt () method, 168, 174
getString () method, 174
getting help, xv
GIF image format, 93
gray values, 25

H
halftone dots, creating, 45
headers, in Table data, 170

I
if blocks, 57-60
image () function, 90
images

drawing to screen, 90-92
formats, 93-94
image/PDF export, 189-192
resizing, 92-93
sequences of, 160-161
transparency , 93-94
working with multiple, 91

index values, 152
initialization statement, 41
int data, 135, 207

J
JPEG image format, 93
JSON data, and APIs, 177-180
JSON files, 172-176

K
key variables, 67
keyCode variable, 69
keypressed variable, 66-70
keys, tapping, 67-68

L
libraries

Library Manager, 184
Serial Library, 193
Sound audio library, 184

lines
drawing, 14-16
drawing continuous, 53
setting thickness of, 53-54
smoothing with easing, 55

Linux installation, 7
loadImage () function, 90
loadTable () function, 167
local variable, 211

Index 215

lowercase/uppercase letters in
code, 203

M
Mac OS X installation, 7
map () function, 70-72, 196
math (see arithmetic operations)
media, 89-102

downloading online example
files, 89-90

fonts, 94-97
(see also fonts)

images, 90-94
(see also images)

shapes, 97-100
(see also shapes)

sound, 184-189
(see also sound)

Message Area, 8
methods, 136, 139
methods, chaining, 179-180
microphones, 186
modularity, 121
motion (see animation)
mouse

clicks of, 56-61
easing movements of, 54-56
tracking movements with

arrays, 156-158
mouse tracking, 51-52
mousepressed variable, 56-58
mouseX/mouseY variables, 70, 92,

188
move () method, 143

N
naming variables, 36
network data (see see APIs (appli-

cation programming inter-
faces))

nf () function, 161
noFill () function, 25
noStroke function, 25

O
object-oriented programming

(OOP), 135
objects, 135-148

arrays of, 158-161
basic concepts, 135-136
classes of, 137-142, 166
creating, 142-145
fields and methods, 136

operators, 39
order of operations , 209

PEMDAS, 40

P
parameters, 13, 202
PDFs (see images)
PEMDAS acronym, 40
persistence of vision, 103
PFont data, 135, 166, 207
PImage data, 135, 166, 207
pins and lines, creating, 45
pixels, 13
PNG image format, 93-94
point () function, 14
popMatrix () function, 83
primitives, 165
println () function, 49
PrintWriter class, 180
Processing

data folder, 89-90
downloading/launching, 7-8
evolution of, xi-xii
Examples and Reference, 11-12
flexibility of, 2
history of, 3
libraries, 183-191
related languages and program

development, 4-5
special variables in, 38
tabs feature, 145
website for sharing/networking,

5
Processing Development Environ-

ment (PDE), 8
PShape data, 135, 166, 207

216 Index

pushMatrix () function, 83

R
radians, 18-20
random () function, 109-111
random movements, 109-111
rectangles

cursor position relative to,
64-66

drawing, 16
rectMode () function, 22
Reference and Examples, 11-12
relational expression, 42-43
relational operators, 42
RGB color, 26
robot programs (examples)

arrays of objects, 162-164
drawing P5 robot, 32-33
drawRobot function, 131-133
generating and reading data

files, 180-182
loading images from SVG/PNG

files, 101-102
modifying code with variables,

47-48
mouse-responding shapes,

72-74
objects, 147-148
random and circular move-

ments, 118-119
translate, rotate, and scale in,

85-87
rotate () function, 77
rotating coordinate system, 77-81
rows and columns, creating with for

loops, 45
rule of variable scope, 211

S
Save command, 11
saveFrame () function, 189
scale () function, 82
scaling shapes, 82-83
scope, variable, 211
sensors, reading, 194-195
Serial Library, 193

setup () function, 50-51
shape () function, 98
shapeMode () function, 98
shapes, 97-100

creating new, 99-100
drawing basic, 14-19
drawing with, 98
moving (see animation)
properties, 21-22
scaling, 98-99
wrapping around screen,

105-107
sin () and cos () functions, 113-116
sine wave values/movement,

115-116
size () function, 14, 38
sketching, 1-2

creating/saving sketches, 10-11
exporting sketches, 11
Sketch menu, 10

smoothing lines with easing, 55
sound, 184-189

fundamentals of, 187
microphones, 186-188
playing, 185-186
sine wave, 187-189

SoundFile class methods, 186
spirals, creating, 116
String data, 135, 166, 207
string values, 67
strings, storing text in, 97
stroke () function, 23, 25
stroke weight consistency, 83
strokeCap () function, 21
strokeJoin () function, 22
strokeWeight () function, 21
SVG format, vector shapes in, 93

T
Table data, 166-172
tabs, 145
test statement, 41-42
text

drawing in boxes, 96
storing in strings, 97

text () function, 68, 95

Index 217

Text Editor, 8
textSize () function, 68, 95
timed events, triggering, 112-113
tracking, mouse, 51-52
transformation effects, isolating,

83
translate () function, 75-77, 126
translating locations, 75-81
transparency control, 27
troublshooting (see bugs, detect-

ing and fixing)
TSV files, 167
tweening, in animation, 108-109

U
update statement, 41
uppercase/lowercase letters in

code, 203

V
values

of variables, 36
variable scope rule, 211
variables, 35-48, 143

arrays versus, 149-152
changing, 36
creating, 36-38
data types, 36
declaring, 37
defined, 35
float variable, 37
local, 211
and repetition, 40-45
reusing identical values, 35
rule of variable scope, 211

vector shapes, 93, 97
vertex () function, 28, 29

W
Windows installation, 7

218 Index

About the Authors

Casey Reas is a Professor at UCLA’s Department of Design
Media Arts. His software, prints, and installations have been fea-
tured in numerous solo and group exhibitions at museums and
galleries in the United States, Europe, and Asia. Casey cofoun-
ded Processing with Ben Fry in 2001.

Ben Fry is principal of Fathom, a design and software consul-
tancy located in Boston. He received his PhD from the Aesthet-
ics + Computation Group at the MIT Media Laboratory, where
his research focused on combining fields such as computer sci-
ence, statistics, graphic design, and data visualization as a
means for understanding information. Ben cofounded Process-
ing with Casey Reas in 2001.

Colophon

The body typeface is Benton Sans designed by Tobias Frere-
Jones and Cyrus Highsmith. The code font is TheSansMono
Condensed Regular by Luc(as) de Groot. The display typeface is
Serifa designed by Adrian Frutiger.

	Cover
	Copyright
	Table of Contents
	Preface
	How This Book Is Organized
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Hello
	Sketching and Prototyping
	Flexibility
	Giants
	Family Tree
	Join In

	Chapter 2. Starting to Code
	Your First Program
	Example 2-1: Draw an Ellipse
	Example 2-2: Make Circles

	Show
	Save and New
	Share
	Examples and Reference

	Chapter 3. Draw
	The Display Window
	Example 3-1: Draw a Window
	Example 3-2: Draw a Point

	Basic Shapes
	Example 3-3: Draw a Line
	Example 3-4: Draw Basic Shapes
	Example 3-5: Draw a Rectangle
	Example 3-6: Draw an Ellipse
	Example 3-7: Draw Part of an Ellipse
	Example 3-8: Draw with Degrees

	Drawing Order
	Example 3-9: Control Your Drawing Order
	Example 3-10: Put It in Reverse

	Shape Properties
	Example 3-11: Set Stroke Weight
	Example 3-12: Set Stroke Caps
	Example 3-13: Set Stroke Joins

	Drawing Modes
	Example 3-14: On the Corner

	Color
	Example 3-15: Paint with Grays
	Example 3-16: Control Fill and Stroke
	Example 3-17: Draw with Color
	Example 3-18: Set Transparency

	Custom Shapes
	Example 3-19: Draw an Arrow
	Example 3-20: Close the Gap
	Example 3-21: Create Some Creatures

	Comments
	Robot 1: Draw

	Chapter 4. Variables
	First Variables
	Example 4-1: Reuse the Same Values
	Example 4-2: Change Values

	Making Variables
	Processing Variables
	Example 4-3: Adjust the Size, See What Follows

	A Little Math
	Example 4-4: Basic Arithmetic

	Repetition
	Example 4-5: Do the Same Thing Over and Over
	Example 4-6: Use a for Loop
	Example 4-7: Flex Your for Loop’s Muscles
	Example 4-8: Fanning Out the Lines
	Example 4-9: Kinking the Lines
	Example 4-10: Embed One for Loop in Another
	Example 4-11: Rows and Columns
	Example 4-12: Pins and Lines
	Example 4-13: Halftone Dots

	Robot 2: Variables

	Chapter 5. Response
	Once and Forever
	Example 5-1: The draw() Function
	Example 5-2: The setup() Function
	Example 5-3: Global Variable

	Follow
	Example 5-4: Track the Mouse
	Example 5-5: The Dot Follows You
	Example 5-6: Draw Continuously
	Example 5-7: Set Line Thickness
	Example 5-8: Easing Does It
	Example 5-9: Smooth Lines with Easing

	Click
	Example 5-10: Click the Mouse
	Example 5-11: Detect When Not Clicked
	Example 5-12: Multiple Mouse Buttons

	Location
	Example 5-13: Find the Cursor
	Example 5-14: The Bounds of a Circle
	Example 5-15: The Bounds of a Rectangle

	Type
	Example 5-16: Tap a Key
	Example 5-17: Draw Some Letters
	Example 5-18: Check for Specific Keys
	Example 5-19: Move with Arrow Keys

	Map
	Example 5-20: Map Values to a Range
	Example 5-21: Map with the map() Function

	Robot 3: Response

	Chapter 6. Translate, Rotate, Scale
	Translate
	Example 6-1: Translating Location
	Example 6-2: Multiple Translations

	Rotate
	Example 6-3: Corner Rotation
	Example 6-4: Center Rotation
	Example 6-5: Translation, then Rotation
	Example 6-6: Rotation, Then Translation
	Example 6-7: An Articulating Arm

	Scale
	Example 6-8: Scaling
	Example 6-9: Keeping Strokes Consistent

	Push and Pop
	Example 6-10: Isolating Transformations

	Robot 4: Translate, Rotate, Scale

	Chapter 7. Media
	Images
	Example 7-1: Load an Image
	Example 7-2: Load More Images
	Example 7-3: Mousing Around with Images
	Example 7-4: Transparency with a GIF
	Example 7-5: Transparency with a PNG

	Fonts
	Example 7-6: Drawing with Fonts
	Example 7-7: Draw Text in a Box
	Example 7-8: Store Text in a String

	Shapes
	Example 7-9: Draw with Shapes
	Example 7-10: Scaling Shapes
	Example 7-11: Creating a New Shape

	Robot 5: Media

	Chapter 8. Motion
	Frames
	Example 8-1: See the Frame Rate
	Example 8-2: Set the Frame Rate

	Speed and Direction
	Example 8-3: Move a Shape
	Example 8-4: Wrap Around
	Example 8-5: Bounce Off the Wall

	Tweening
	Example 8-6: Calculate Tween Positions

	Random
	Example 8-7: Generate Random Values
	Example 8-8: Draw Randomly
	Example 8-9: Move Shapes Randomly

	Timers
	Example 8-10: Time Passes
	Example 8-11: Triggering Timed Events

	Circular
	Example 8-12: Sine Wave Values
	Example 8-13: Sine Wave Movement
	Example 8-14: Circular Motion
	Example 8-15: Spirals

	Robot 6: Motion

	Chapter 9. Functions
	Function Basics
	Example 9-1: Roll the Dice
	Example 9-2: Another Way to Roll

	Make a Function
	Example 9-3: Draw the Owl
	Example 9-4: Two’s Company
	Example 9-5: An Owl Function
	Example 9-6: Increasing the Surplus Population
	Example 9-7: Owls of Different Sizes

	Return Values
	Example 9-8: Return a Value

	Robot 7: Functions

	Chapter 10. Objects
	Fields and Methods
	Define a Class
	Create Objects
	Example 10-1: Make an Object
	Example 10-2: Make Multiple Objects

	Tabs
	Robot 8: Objects

	Chapter 11. Arrays
	From Variables to Arrays
	Example 11-1: Many Variables
	Example 11-2: Too Many Variables
	Example 11-3: Arrays, Not Variables

	Make an Array
	Example 11-4: Declare and Assign an Array
	Example 11-5: Compact Array Assignment
	Example 11-6: Assigning to an Array in One Go
	Example 11-7: Revisiting the First Example

	Repetition and Arrays
	Example 11-8: Filling an Array in a for Loop
	Example 11-9: Track Mouse Movements

	Arrays of Objects
	Example 11-10: Managing Many Objects
	Example 11-11: A New Way to Manage Objects
	Example 11-12: Sequences of Images

	Robot 9: Arrays

	Chapter 12. Data
	Data Summary
	Tables
	Example 12-1: Read the Table
	Example 12-2: Draw the Table
	Example 12-3: 29,740 Cities

	JSON
	Example 12-4: Read a JSON File
	Example 12-5: Visualize Data from a JSON File

	Network Data and APIs
	Example 12-6: Parsing the Weather Data
	Example 12-7: Chaining Methods

	Robot 10: Data

	Chapter 13. Extend
	Sound
	Example 13-1: Play a Sample
	Example 13-2: Listen to a Microphone
	Example 13-3: Create a Sine Wave

	Image and PDF Export
	Example 13-4: Saving Images
	Example 13-5: Draw to a PDF

	Hello, Arduino
	Example 13-6: Read a Sensor
	Example 13-7: Read Data from the Serial Port
	Example 13-8: Visualizing the Data Stream
	Example 13-9: Another Way to Look at the Data

	Appendix A. Coding Tips
	Functions and Parameters
	Color Coding
	Comments
	Uppercase and Lowercase
	Style
	Console
	One Step at a Time

	Appendix B. Data Types
	Appendix C. Order of Operations
	Appendix D. Variable Scope
	Index

